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INTRODUCTION 

Relevance of the research 

Efforts to reduce greenhouse gas emissions and dependence on limited 

fossil fuel resources lead to development of new cleaner alternative energy 

sources. Recently, hydrogen fuel cells are considered as promising systems for 

energy supply, capable of contributing to progress of sustainable energy sources 

and reduction of total amount of emitted CO2. Hydrogen is recognized as one of 

the best energy carriers, when chemical energy is converted into electricity. 

Therefore, much attention is paid to environmentally friendly and economical 

methods to extract hydrogen.  

Portable electronic devices have become an important inseparable part in 

human daily life. Functionality of various gadgets demonstrates their fast progress 

each year. However, current battery technologies are not developed as expected; 

hence, they cannot ensure required power for longer time of use. Consequently, 

demand for alternative and effective techniques for energy supply becomes 

relevant. It is worth mentioning that it is very important for long-life devices in 

military industry. In this case, proton exchange membrane (PEM) fuel cells can 

improve operation characteristics, because of larger energy density, fast start and 

higher efficiency. Moreover, fuel cell will work until hydrogen is supplied. 

Hydrogen fuel cells can be used in stationary and portable electronic 

devices. However, despite the fact that hydrogen has high-energy value and 

reaction by-products are oxygen together with water, practical application of this 

technology in low power apparatus is limited due to expensive and complex 

extraction and storage of hydrogen. Existing external chargers with integrated fuel 

cells (Horizon MiniPak ir Inteigent Energy Upp) confirm relevance of this topic. 

In addition, Apple Inc. patented the use of hydrogen technologies in smart phones 

and tablet computers (US20150249280) by using expensive metal hydrides for 

hydrogen storage. 

Therefore, previously mentioned hydrogen storage and transportation 

systems could be replaced by small equipment for hydrogen synthesis on demand 

(in situ), when hydrogen is supplied after its extraction during the reaction between 

metal and water. Promising in situ hydrogen extraction, when reaction between 

aluminium and water is ensured, can be applied to portable low power devices 

with PEM fuel cells. On the other hand, water insoluble layer is created on the 

surface of Al at natural conditions. It stops an access of water molecules on the 

metal part of Al.  

The latest literature analysis reveals a lot of information about different 

methods used to break or change the structure of barrier layer; and technological 

solutions for energy generation when Al-water reaction is applied. Nevertheless, 

activation of Al surface is usually based on expensive or environmentally 

unfriendly materials and extremely high temperature. However, hydrogen 
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synthesis is very slow and incomplete, i.e. does not fully react. As a result, other 

unique solutions are needed in order to remove or replace barrier layer at the 

surface of Al by avoiding expensive alloys and seeking energy consumption as 

low as possible. Therefore, clean plasma technologies could be applied to an 

effective change of surface structure. 

An object of this research – the new method of Al surface activation in 

plasma and explanation of processes which affect the mechanism of activation and 

Al-water reaction. 

The aim of the Doctoral Dissertation 

The aim of this work is to create technology based on low temperature 

plasma activation used for surface modification of aluminium powder and to apply 

modified aluminium powder for hydrogen production during powder reaction with 

water, which could be used for electricity generation. 

Tasks of the Doctoral Dissertation 

In order to achieve the objective the following tasks should be solved: 

1. Experimentally determine the optimal parameters of activation under 

gas plasma used for aluminum powder modification (varying the 

interaction time, gas pressure, discharge power and distance between 

the plasma source and sample); 

2. To investigate the mechanism of Al powder modification and 

determine how changes of the surface of Al powder depend on variation 

of plasma activation parameters and interaction time with plasma; 

3. Experimentally determine conditions of the reaction between modified 

Al powder and water ensuring the highest efficiency of hydrogen 

synthesis (impact of additional materials (NaOH), temperature and 

amount of water); 

4. To evaluate the possibility of the electricity generation, when hydrogen 

received after Al-water reaction is supplied to the proton exchange 

membrane fuel cell; 

5. To create a γ-Al2O3, applied in the catalyst industry, out of the by-

product received after Al-water reaction. 

Scientific novelty 

In the thesis a new method of Al powder surface modification, when low 

temperature plasma is applied in order to create active Al in water was proposed. 

Hydrogen generated during the Al reaction with water is suitable for the low 

temperature proton exchange membrane fuel cells. In addition, method for 

synthesis of highly pure γ-Al2O3, when by-product of activated Al-water reaction 

is used as a precursor was offered. 
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Practical value 

Results of this work are significant for creation of safe and clean hydrogen 

generation on demand systems based on the reactions between activated Al and 

water. This concept could be applied to the fuel cells used in the market for low-

power portable electronic devices (external chargers, digital or mobile devices, 

GPS transmitters or radio equipment used in the military sector, etc.). Practical 

value of this work also is demonstrated by the possibility to apply this technology 

for synthesis of marketable aluminum oxide powder used in catalyst production. 

Statements carried out for defence 

1. Aluminium powder is activated effectively and it remains in such state 

at least for 6 months after its interaction with low temperature hydrogen 

gas plasma generated by the magnetron. 

2. Plasma treatment leads to transformation of hydrophobic surface of the 

aluminium powder into hydrophilic, increase of polar molecules 

concentration and formation of inhomogeneously distributed defects on 

the surface. 

3. Almost 100% of theoretical value of hydrogen amount is generated 

during the reaction between plasma activated aluminium powder and 

water, and kinetics of the reaction is mostly determined by water 

temperature. 

4. Hydrogen production during activated Al and water reaction can be 

applied to the low-power proton exchange membrane fuel cells used 

for electricity generation on demand. 

5. Highly pure nanocrystalline gamma aluminium oxide, with BET 

surface area > 200 m2/g, is obtained after by-product of the reaction 

between activated Al and water is annealed under the atmospheric 

conditions.  

The structure and content of the Doctoral Dissertation 

The dissertation is structured as follows: introduction, literature review, 

methodology, results and discussion, conclusions, the list of references and the list 

of scientific publications. The dissertation consists of 128 pages including 54 

figures, 15 tables and 262 references. 
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1. LITERATURE REVIEW 

This chapter provides an overview of currently existing methods for 

hydrogen production, the main hydrogen storage techniques and hydrogen 

generation form the reaction of various metals with water. Literature review 

presents state-of-the-art methods for the aluminium activation in order to disrupt 

naturally formed aluminium oxide layer (which acts as barrier for water 

molecules) and make it water-reactive. Numbers of suggestions have been 

proposed by other authors for disrupting the protective layer and accelerating 

hydrogen production, including mechanical treatment (ball milling), use of highly 

alkaline solution or use of additional metals (Ga, In, Sn and etc.), oxides or 

inorganic salts additives. However, some techniques are still too complex and 

others are harmful, expensive or need elevated water temperature for effective 

reaction with water. Therefore, a novel method for Al surface modification under 

glow discharge plasma treatment was proposed and studied in this thesis. Plasma 

is considered as environmentally-friendly process. Also the possibilities of Al-

water reaction by-product regeneration and reuse were discussed. 

2. EXPERIMENTAL SETUP AND METHODOLOGY 

2.1. Experimental investigation 

Modification of aluminium powder was carried out in a physical vapour 

deposition system which is installed at LEI Centre for Hydrogen Energy 

Technologies. Design of the system is presented in Fig. 2.1 a. Sample holder, 

magnetron connected to the power source and a shutter between sample and 

magnetron were located in the vacuum chamber. DC power supply (3 kW, 

Advanced Energy DC Pinnacle 3000) was coupled with pulse generator 

(Advanced Energy Sparc-le 20). Frequency of generated pulse was 20 kHz, where 

duration of positive signal was 5 μs. A two-stage vacuum system including rotary 

and diffusion pumps enabled and maintained a base pressure of 1.5·10-3 Pa. 

Circular magnetron with Al target (diameter 10 cm) was used as the source of 

hydrogen gas plasma. Aluminium target with purity of 99.999 % was obtained 

from Kurt J. Lesker Company. Whereas hydrogen gas with purity ≥ 99.999 % (5.0 

grade) was purchased from AGA Company. 
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Fig. 2.1. Vacuum system (a) and magnetron (b) 

The untreated Al powder was kept in the closed ceramic vessel under 

ambient conditions. During each experiment, about 0.5 g of aluminium powder 

was evenly distributed in a stainless steel holder which was placed in vacuum 

chamber under the magnetron (Fig. 2.1 b).  

Each time opening the vacuum chamber leads to magnetron target 

interaction with air and adsorption of oxides, hydroxides or carbon based 

compounds on the surface. These undesirable compounds may affect Al 

modification experiments. Therefore the shutter between the sample and the 

magnetron was closed and the target surface was being cleaned using argon gas 

plasma for 5 minutes (bombardment of Ar+ ions). After target cleaning, vacuum 

chamber was pumped again and hydrogen gas was injected and maintained 

operating pressure at 13 Pa. The shutter was opened after plasma ignition and the 

activation process of Al powder began. During the plasma process magnetron as 

well as vacuum chamber walls were water-cooled. Isolated K-type thermocouple 

was used to measure the temperature near the sample. A Langmuir probe was 

inserted in plasma and used to determine ion current density at 4 and 8 cm distance 

between the sample and magnetron. When the distance is equal to 8 cm, ion current 

density is ≈ 0.5 mA/cm2, while at 4 cm it is ≈ 1.1 mA/cm2. The higher it is, the 

larger amount of positive ions reach the Al surface during plasma treatment. 

According to literature [1], the electron energy is 1–2 eV and density could reach 

1010–1011 cm-3 in such glow discharge plasma. 

The main technological parameters of aluminium powder activation are 

given in Table 2.1. 
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Table 2.1. Technological parameters of Al powder activation by hydrogen gas 

plasma  

Main parameters Values 

Base pressure, Pa 1.510-3 

Working pressure, Pa 13 

H2 flow rate, ml/min 9 

Al target diameter, cm 10 

Magnetron operating voltage, V 250–260 

Magnetron operating current, A 0.3–1 

Distance between sample and magnetron, cm 2–8 

Ionic current densities, mA/cm2 ≈ 0.5 and 1.1 (at distance of 8 and 4 cm) 

Activation time, h 1–20 

Temperature during activation, °C 
80–180 (depends on the activation 

parameters) 

 

The unmodified Al powder poured into water floats on the top of the 

distilled water surface and barely reacts with it. Modified Al powder reacted with 

distilled water without any additives, however, reaction kinetics were relatively 

slow. Therefore, a small amount of sodium hydroxide (0.05 M NaOH solution) 

was used as reaction promoter to slightly increase the concentration of OH groups 

and enhance the reaction kinetics. Hydrogen generation during the reaction of Al 

powder and water was investigated using custom made laboratory stand. An 

inverted burette (Pyrex 250 ml) filled up with water was used to quantify hydrogen 

production volume, where the quantity of H2 gas was measured from change of 

water level in the burette. Burette has graduated scale in steps of 1 ml Hydrogen 

generation yield was defined by integrating the H2 flow with time until the H2 

production flow dropped to near zero level. During the reaction, temperature of 

water was maintained using universal stirred water bath (BWT-U). 

Experiments of electric energy generation were investigated using proton 

exchange membrane fuel cell fuel cell (1.5 W, PEM). Hydrogen supply was 

ensured via plasma modified Al powder and water reaction. Moisture trap was 

introduced between reaction tank and energy generation unit in order to prevent 

fuel cell against contamination. Renewable energy monitor from Horizon with 

constant resistance load of 2 Ω was used to measure generated power. 

Measurements were performed at different concentration of NaOH (0.025 M, 0.05 

M and 0.1 M) and temperature points (25°C and 35°C). 

The solid by-product (white sediments) was produced during the reaction 

between the modified aluminium powder and water. This by-product was used as 

a precursor for synthesis secondary-use product. The by-product of the reaction 

was dried under ambient conditions and annealed in two steps at 280 °C and 500 

°C for 20 h under atmospheric conditions using a laboratory oven (SNOL 

7/1300L), yielding boehmite and pure gamma aluminium oxide, respectively. A 

heating rate of 3°C/min was used to reach the specified temperature. Samples were 

removed from the oven after cooling down to room temperature (4-5 hours). The 
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purity of the obtained γ-Al2O3 depends only on the purity of the initial aluminium 

powders, the working gasses used in the activation procedure, and distilled water. 

High purity product is very suitable for industrial catalytic processes. 

2.2. Analysis methods 

Crystal structure of aluminium powder was analysed by X - ray diffraction 

(XRD) method using Bruker D8 diffractometer. The measurements were 

performed at 2θ angle in the range 20–70° using Cu cathode Kα radiation (λ = 

0.15406 nm) in steps of 0.01° and Lynx eye position sensitive detector. Al powder 

morphology was characterized using a scanning electron microscope (SEM, 

Hitachi S-3400N). The elemental composition of aluminium powder was analysed 

via energy dispersive X-ray spectroscopy (EDS, Bruker Quad 5040).  For the top 

surface chemistry analysis plasma-modified aluminium powder was extracted 

from the vacuum chamber to the atmosphere (interaction time with ambient air 

was less than 5 min) and transferred to X-ray photoelectron spectroscope (XPS, 

PHI 5000 Versaprobe) where chemical composition of the surface was measured. 

The signal observation depth of the XPS method is approximately 5–10 nm. 

Sorptometer Kelvin 1042 was used to measure Brunauer–Emmett–Teller (BET) 

surface area of Al powder, reaction by-product and gamma alumina. 

Concentrations of oxygen and hydrogen within the samples were measured using 

a gas analyser (HORIBA EMGA-830) based on inert-gas-fusion method. The 

samples were loaded into the graphite crucibles and heated by the impulse furnace 

(up to 2000 °C) which nominal power is 8 kW. 

 

3. RESULTS AND DISCUSSION 

3.1. Experimental study of other metals exposed to the hydrogen gas 

plasma 

Results of previous experimental studies showed that hydrogenation of 

metals under low temperature hydrogen gas plasma, according to the methodology 

presented in this thesis, leads to metal hydride formation after certain time. 

Generally a formation of metal hydride phase can be described as a multi-step 

process [2]: firstly, H2 molecules are physically adsorbed on the metal surface 

because of the Van der Waals force; secondly, H2 dissociate into atoms and 

chemisorption takes place; finally, H atoms diffuse along the grain boundaries into 

the bulk where nucleation and growth of metal hydride start. Usually, the 

dissociation of H2 molecules is ensured by the use of catalysts (e.g. Pd) which also 

prevents surface oxidation. But in case of plasma treatment, there is no need for 

the catalyst because plasma consists not only of hydrogen molecules but also of 

atoms, energetic ions, active radicals, electrons and photons. During the hydrogen 

plasma interaction with metal, hydrogen ions can penetrate inside the metal 
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surface and create the dynamic surface area with new paths for hydrogen 

penetration inside the bulk. 

Formation of MgH2 occurs under hydrogen pressure of 30 bar and at 

temperature of 350–400 ºC [2]. Moreover, the process is quite slow. However, 

during the hydrogenation process of Mg films using hydrogen gas plasma, 

according to the methodology was described, MgH2 peaks were observed after 3 

hours of hydrogenation and intensity of peaks even increased after 5 hours of H2 

plasma treatment, 2θ = 29º, 35.7º and 39.8º (Fig. 3.1, black balls) [3]. Plasma can 

bypass the thermodynamic requirements. 

 

Fig. 3.1. XRD patterns of Mg films before and after hydrogenation in H2 plasma for t = 

1h, 3h and 5h 

Plasma treatment can initiate a simultaneous formation of defects, vacancies 

and dislocations in Mg film which act as new paths for adsorbed hydrogen atoms 

to penetrate into the bulk of material. Furthermore, plasma removes oxide and 

hydroxide species formed on the Mg surface, which tends to decrease the 

hydrogen absorption kinetics. 

Solid metal hydride solution, which is called the α-phase, is formed while 

the hydrogen concentration is relatively low in the bulk (H atoms are randomly 

distributed in the metal lattice). Usually the XRD technique does not register this 

phase. When the absorbed hydrogen concentration increases up to the limit value, 

the α-phase transforms into the crystalline metal hydride phase (XRD peaks 

registered). The increase of XRD peaks indicates the formation of crystalline 

structures while shift of peaks shows stresses inside the film. 

According to these changes in Mg film after hydrogen plasma treatment, it 

was assumed that aluminium hydride (AlH3) could be synthesised and hydrogen 

could be stored inside the lattice of aluminium in the same way. 
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3.2. Structural analysis of aluminium powder and determination of O/H 

gas content before and after plasma activation 

The optimal conditions for Al powder activation in plasma were determined 

experimentally. The activation of Al was considered to be successful when Al 

powder immediately sank after immersion into the water and started to react by 

releasing hydrogen gas Unsinkable Al powder indicates high hydrophobicity of 

the surface and water molecules are repelled without reaching metallic part of Al. 

In all cases, the working H2 gas pressure of 100 mTorr (13 Pa) was chosen as the 

best one and sufficient for plasma activation. Plasma was instable at lower or 

higher gas pressures. Besides the activation process, it was aimed at obtaining 

AlH3 structure which can produce 1.8 times more hydrogen than pure aluminium. 

Usually formation of AlH3 requires extremely high pressure of H2 gas (≈ 10 GPa) 

but reactive plasma could destroy the oxide barrier and initiate diffusion of H 

atoms into the bulk of Al. 

Aluminium powder was modified under hydrogen gas plasma at 250 W for 

1 and 3 hours. A working distance between the sample and magnetron varied from 

4 cm to 8 cm. However, the XRD analysis of Al powder did not show any 

significant structural changes after plasma treatment under altered conditions (Fig. 

3.2). XRD patterns include cubic aluminium peaks with crystallographic 

orientations (111), (200) and (220). Small peak at 2θ = 41.8° can be identified as 

aluminium oxide (Al2O3). X-ray diffraction did not register any structural changes 

even after longer period of plasma treatment. Kβ radiation and Ni absorption edge 

are generally achieved because of Nickel attenuation filter equipped in device. 

Structure refinement of XRD patterns (Rwp ≈ 4) was performed using TOPAS 

software and crystallite size of Al powder increased from 113 nm up to 125 nm 

after modification in plasma. Despite the altered plasma activation conditions, 

peaks intensity and full width at half maximum remained almost unchanged. 

Whereas, lattice parameter was almost identical aAl = 4.048 Å and fluctuated only 

in the range of ± 0.002 Å. These minor fluctuations could be related to the 

instrumental error. 

Buckley and Birnbaum studied hydrogen introduction into aluminium foil 

using cathodic plasma charging technique but X-ray diffraction registered near 

zero change in Al lattice parameter [4]. These results did not correlate with the 

hydrogenation of other metals with cubic orientation where lattice expansion of 

≈2,9 Å3 was exhibited. However, this small change was associated with the 

formation of hydrogen–vacancy complexes in the near surface layers of Al. As the 

amount of hydrogen–vacancy complexes increases, their agglomeration into larger 

ones and formation of hydrogen bubbles can be observed [5]. Later, Xie et al. 

presented a model which confirmed that intensive flow of hydrogen ions/atoms 

upon the metal surface can create point defects and vacancies [6]. 
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Fig. 3.2. XRD patterns of unmodified Al powder and plasma modified at 250 W and 8 cm 

for 1 h; at 250 W and 4 cm for 1 h; at 250 W and 8 cm for 3 h; and at 250 W and 4 cm for 

3 h 

Formation of alane phase (AlH3) is a challenge because of low 

decomposition temperature which varies from 60 to 100 ºC depending on 

structural phase while MgH2 decomposes at 300 ºC [7,8]. Synthesis of MgH2 is 

much more favourable than AlH3 due to its thermal stability. Additionally, ultra 

violet light emitted during the plasma process can further accelerate 

decomposition of alane. It is possible that formation and decomposition of AlH3 

occur simultaneously on the Al surface leading to the change of surface layer 

during plasma treatment. This layer undergoes the intensive migration of H atoms 

accompanied by adsorption, desorption, relaxation and defects formation.  

In this case, the temperature near sample holder was insignificantly 

dependent on the changeable distance between the sample and magnetron, and 

varied from 100 ºC – 8 cm to 112 ºC – 4 cm (Table 3.1). Therefore, too high plasma 

temperature could be one of the main reasons why AlH3 was not synthesised. 

Processes of synthesis and decomposition are very likely to occur simultaneously. 

In the future, it is recommended to cool down the holder of Al powder at 

temperatures close to 0 ºC during the hydrogen plasma treatment. 

Table 3.1 presents the results of O/H content within unmodified and plasma 

modified Al powder. Although oxygen concentration of initial and plasma treated 

Al powder remained almost the same after plasma modification, the content of 

hydrogen decreased roughly 3 times. Higher hydrogen content of untreated 

powder indicates that not only native aluminium oxide is formed but aluminium 

surface is passivated by hydroxides as well. However, gas analyser cannot 

distinguish which part of hydrogen is adsorbed on the surface and which is 
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introduced into the near surface structure. Therefore the decreased amount of 

hydrogen could be related to removal of adsorbed OH groups and C–H compounds 

on the surface because hydrogen is a powerful reducing agent and to the small 

amount of hydrogen introduced into the Al structure. Buckley and Birnbaum 

observed that very small amount of hydrogen (up to 1000 ppm) was introduced in 

the surface layer of Al foil [4]. The main pathways for hydrogen in the surface 

layer of Al are associated with vacancies created by plasma. This result could be 

the sign of creation of restructured surface. 

Table 3.1. O/H content of unmodified and plasma modified Al powder 

Sample Mass, g O, wt. % O error H, wt. % H error 

Unmodified Al 0.05 2.7176 ±0.5 % 0.3142 ±2 % 

250 W, 3 h, 4 cm, Tp = 112 °C 0.05 2.7537 

±0.5 % 

0.1193 

±2 % 
250 W, 3 h, 8 cm, Tp = 100 °C 0.05 2.4462 0.1068 

250 W, 1 h, 4 cm, Tp = 112 °C 0.05 2.7233 0.1201 

250 W, 1 h, 8 cm, Tp = 100 °C 0.05 2.6779 0.1179 

However, hydrogen ions are very small and potentially can induce changes 

and formation of vacancies at the very top surface of the particles or Al/Al2O3 

interface (down to several atomic monolayers), but if hydrogen plasma modifies 

only the top surface of aluminium particles without changing the long range lattice 

structure (bulk material properties) these alterations would be not observable by 

the XRD technique (information depth of XRD ranges from several micrometres 

to a few hundred micrometres) therefore use of other analysis techniques is 

needed. 

Under mentioned conditions modified Al powder showed enhanced surface 

wettability and demonstrated the best reaction with water kinetics and highest 

hydrogen yield. 

3.3. Surface morphology and elemental analysis of unmodified and 

plasma modified aluminium powder 

At first glance, modified and unmodified Al powder did not differ. In both 

case it was a fine, grey powder. Agglomerations of metal particles were not 

observed. 

 

Fig. 3.3. Views of unmodified and plasma modified Al powder 
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Physical surface bombardment by ions from plasma could additionally 

enhance the effect of hydrophilicity because of slightly changed surface roughness 

[9]. Fig. 3.4 presents SEM views of untreated Al powder (a-c) and Al powder 

modified at 250 W and 8 cm distance for 1 hour (d-f) under hydrogen gas plasma. 

Presented pictures correspond to different magnifications (scale bar 100 μm, 5 μm 

ir 3 μm). Al powder modified under previously mentioned conditions (by changing 

time and distance) demonstrated pretty similar morphology in all cases. Activation 

at lower distance than 4 cm led to the melting of Al surface. Comparing Al powder 

before and after plasma modification, the shape of Al particles did not appear to 

be changed. Irregularly shaped particles were observed in all samples, which size 

varied from 10 ± 5 μm up to 80 ± 20 μm. Untreated powder surface seems to be 

relatively smooth (Fig. 3.4., b-c). 

  

  

  

Fig.3.4. SEM images of untreated Al powder (a-c) and H2 plasma modified at 250 W and 

8 cm distance for 1 h (d-f) 

Hydrogen can cause defect formation and induce cavitation/blistering effect 

[10]. However, surface of Al powder has not changed significantly after H2 plasma 
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treatment. Some areas of modified Al powder revealed irregularities and micro 

cracks. As well inhomogeneously distributed bubble structures were observed on 

the surface of Al powder particles after plasma treatment (Fig. 3.4, f). The size of 

these bumps varies from 100 nm up to 500 nm. It is well known that hydrogen 

atoms could agglomerate in molecules and form bubbles at the metal-oxide 

interface during hydrogen ion irradiation [11]. Such bubbles formation mechanism 

is related to the complexes of hydrogen–vacancies in the surface layer of Al where 

hydrogen atom can leave the vacancy and diffuse to the metal-oxide interface. 

Low solubility of hydrogen in aluminium leads to the clustering of hydrogen atoms 

at the vacancy defects and metal-oxide interface [10]. The excessive amount of 

hydrogen at the interface leads to the raised internal pressure which pushes the 

native oxide layer outwards until the visible bubbles are formed [10,12]. Smaller 

bubbles can be merged into larger ones. On the other hand hydrogen can also 

dynamically interact with metal side (under the native oxide layer) without 

formation of visible blisters or morphology change [10]. Therefore SEM does not 

indicate a lot of characteristic changes in surface morphology, but oxide layer 

could be drastically weakened. 

Though aluminium oxide act as a barrier, it is possible that small part of 

hydrogen atoms could diffuse into the bulk along the grain boundaries and form 

solid solution which was not registered by X-ray diffraction. Such effect leads to 

the higher surface energy and result some irregularities and rupture of the near-

surface area. Defects are a pathway for water molecules to reach fresh aluminium 

metal surface and initiate Al-water reaction. 

Surface area (BET) of untreated Al powder was 3.51 m2/g meanwhile it 

increased slightly up to 3.75 m2/g after plasma treatment. This is the result of 

plasma bombardment with ions and surface restructuring (dynamic alterations in 

the surface layer). Smaller particles with larger specific surface area produce 

hydrogen at higher rate. Moreover, hydrogen could generate high stresses which 

could initiate top surface irregularities and formation of defects. 

EDS elemental composition results did not show any significant change in 

O/Al ratio after plasma modification at 250 W, 8 cm for 1 hour comparing with 

unmodified Al powder (before plasma – O/Al = 0.030; after plasma – O/Al = 

0.031) and this confirms the assumption that plasma treatment changes only the 

top surface of Al powder. Small content of oxygen can be attributed to the presence 

of native oxide layer which is formed upon metal exposure to air. Defective oxide 

layer could be formed under hydrogen ions treatment from plasma. 

3.4. Surface chemical analysis of aluminium powder 

Effective surface wettability and Al-water reaction strongly depends on the 

chemical properties of the surface, accumulated charge and functional molecule 

groups. In contrast to XRD, XPS (X-ray photoelectron spectroscopy) is a surface 

sensitive technique and can provide more information on the small scale changes 
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at the very top surface of the Al powder particles (up to 10 nm). XPS 

measurements observed oxygen, carbon and aluminium which are present on the 

surface of aluminium powder particles before and after hydrogen plasma 

modification (Fig. 3.5, a). Unmodified Al surface composition consists of 45.3 % 

of C, 19.5 % of Al and 35.2 % of O (Fig. 3.5, b). The majority of materials exposed 

to the atmospheric air (gaseous compounds are captured from air) have a naturally 

formed thin layer of carbon/hydrocarbon, which is called adventitious carbon 

[13,14]. The thickness of the surface carbon layer is up to 2 nm [15]. O and Al 

indicate the presence of the aluminium oxide and hydroxide layer which acts as a 

barrier and prevents aluminium-water reaction. In all cases, after plasma treatment 

the composition of Al powder surface has changed almost equally (with slight 

variations of ± 1 % from the mean value). The average values of C, Al and O were 

determined to be 14.3 %, 31.2 % and 54.5 %, respectively. The amount of the 

surface carbon C1s decreased by more than 3 times (from 45.3 at. % down to 14.3 

at.%) after plasma modification. Such significant reduction of carbon content 

could be related to the physical and chemical carbon desorption initiated by 

plasma. 

 

Fig. 3.5. XPS survey scan of aluminium powder surface before and after hydrogen plasma 

(a) and atomic concentrations of unmodified Al powder and plasma modified at 250 W 

and 8 cm for 1 h; at 250 W and 4 cm for 1 h; at 250 W and 8 cm for 3 h; and at 250 W and 

4 cm for 3 h 
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Presumably, a part of the surface carbon was sputtered by ions arriving from 

the hydrogen gas plasma or desorbed as hydrocarbon molecules (volatile CxHy 

compounds). Also it is known that changes of surface chemistry can be induced 

by ion bombardment and by accidental mixing of excited surface atoms (which 

bonds with other atoms are weakened) [16]. In the ideal case, after modification 

in plasma the concentration of surface carbon should be near zero. However, small 

amount of carbon was readsorbed on the active sites of Al powder produced by 

plasma treatment. The most probable source of the observed carbon was the 

adventitious carbon from ambient air to which plasma-modified Al powder was 

exposed during transfer from vacuum chamber to the XPS equipment (in less than 

5 min). The deposits from the residual gases inside the plasma treatment or XPS 

chambers are less likely due to the short take away time (roughly 1 min) from the 

plasma treatment chamber and high vacuum (10-7 Pa) inside the XPS. 

Modified Al powder became hydrophilic and sank instantly after immersion 

in water. Hydrophilicity is related to the formation of polar molecules/groups 

which increase surface tension and are capable to form hydrogen bonds [17]. Thus 

transformation from the stable Al2O3/Al(OH)3 layer to the modified 

Al2O3/Al(OH)3 layer could change the initially hydrophobic Al powder to the 

hydrophilic by increasing quantity of the unsaturated bonds on the very top 

surface. 

Carbon plays an important role in the exchange of surface chemical state 

and wettability. Ratio of carbon and aluminium atomic content C/Al could be used 

as a relative evaluation of the surface activity [17]. Hydrophobic surface always 

has relatively large C/Al ratio [17]. A higher C/Al ratio indicates that the surface 

has adsorbed a lot of long-chain carbon based molecules. Plasma treatment can 

terminate these chains leading to the decrease of C/Al ratio. In our case, the C/Al 

ratio was 2.32 for initial Al powder and 0.44–0.48 after plasma modification (Fig. 

3.5, a). 

Basically carbon chains are linked together, thereby forming a non-polar C-

C bond, which increases hydrophobicity of the surface [17]. Reduced number of 

non-polar groups and increased surface energy leads to the formation of strongly 

polar functional groups (carbonyl or carboxyl) on the surface. Surface polarity is 

an important feature, which determines wettability [18]. Hydrophobicity is related 

with unique electronic structure, which prevents hydrogen bonding with interfacial 

water molecules, while polar molecules (groups) increase the hydrophilicity of the 

surface because of the number of unsaturated polar sites [18]. 

Indeed, in the conducted experiments it was observed that after plasma 

treatment C1s peak broadened on the higher binding energy side, which indicates 

not only the decrease of non-polar carbon C–C bonds but also the formation of 

polar groups (responsible for the hydrophilicity) at the surface. 

In order to better understand plasma modification mechanism of Al powder, 

XPS fitting analysis of C1s and Os1 peaks was performed. 
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Fig. 3.6 shows deconvolution of surface carbon C1s peak of untreated (a) 

and plasma treated (b) aluminium powder. C1s peak was observed to consist of 

four components: non-polar C–C bonds (285.0 eV); the rest are polar groups [17], 

carbon with single bonded oxygen C–O (286.2 eV), carbon with double bonded 

oxygen C=O (288.0 eV) and carboxyl groups COO- (289.2 eV). 

 

 

 

Fig. 3.6. C1s peak fitting of unmodified (a) and plasma modified (b) Al powder at 250 W, 

8 cm for 1 h 

Fig. 3.6 a shows that in case of unmodified Al powder non-polar C–C bonds 

account for 82.5 % of the total peak area whereas cumulative peak area of the 

remaining polar groups accounts only for the 17.50 %, giving the approximate 

ratio of polar and non-polar groups equal to 0.21. 

Plasma treatment led to the formation of the more oxidized carbonaceous 

species on the surface of plasma-modified aluminium powder. Significant 

decrease of the amount of non-polar (C-C) groups to 68.9 % and increase of polar 

groups (C–O, C=O and COO-) up to 31.1 %, which are responsible for 
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hydrophilicity of the surface was registered after plasma modification (Fig. 3.6, 

b). In this case, the ratio between polar and non-polar groups is 0.45. This ratio is 

more than two times higher, in comparison to the initial powder. Consequently, 

lower C/Al ratio and reduced amount of non-polar C–C groups indicates increased 

surface polarity [17] and improved surface wettability. 

Deconvolution results of O1s peaks of initial and plasma modified Al 

powder are presented in Figures 3.7 a and b, respectively. O1s peak consists of 

three components: lattice oxygen (Al–O–Al), Al hydroxyl (Al–OH) and polar C–

O groups. For the initial powders the peak area of Al hydroxyls (58.3 %) is higher 

than the Al–O–Al (mainly Al oxide) peak (38.4 %) (Fig. 3.7, a). After Al powder 

modification in plasma the peak area of Al hydroxyl groups sharply decreased to 

18.0 % and area of Al–O–Al peak increased up to 71.3 % (Fig. 3.7, b). Surface 

adsorbed OH groups are very sensitive to the ions and electrons from plasma 

which can initiate OH desorption (electrons provide energy while H+ ions bond to 

OH and desorb as H2O molecules). Al/O terminated surface can enhance reactivity 

of Al with water. Moreover, amount of polar C–O groups increased more than 

three times from 3.3 % up to 10.7 % after plasma modification. 

 

 

Fig. 3.7. O1s peak fitting of unmodified (a) and plasma modified (b) Al powder at 250 W, 

8 cm for 1 h 
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High amount of Al hydroxyl groups at the surface increases the adsorption 

of non-polar molecules and surface hydrophobicity as well [19]. Therefore, this is 

an additional argument that after plasma treatment Al surface obtains higher 

wettability due to the reduced content of OH groups. It is well known that 

hydrogen plasma could be used as reactive gas for changing the top surface 

chemistry [20]. Hydrogen gas plasma consists of the highly reactive atomic 

hydrogen, ions and electron-excited H2 molecules (2H, 2H+, H2
*) [21] which can 

break up weak chemical bonds (e.g., OH groups) at the near surface or remove 

adventitious carbon [22]. It is noted that hydroxide layer could act as an additional 

barrier and diffusion resistance for water molecules [23], while increased surface 

wettability leads to better contact and more efficient reaction with water. 

Reconstruction of surface layer atoms and charge redistribution could be induced 

due to surface cleaning, introduction of small amount of hydrogen and relocation 

of excited atoms at the surface. 

It is indicated that reactivity of metal oxide surfaces depends on the degree 

of surface hydroxylation [24]. Peter J. Eng et al. [24] showed that under normal 

atmospheric conditions (298 K and 50-60 % relative humidity) about 3 

monolayers of water are adsorbed on alumina surface. A fully hydroxylated 

surface is oxygen-terminated layer with double Al layer below and laterally 

disordered layer approximately 2.3 Å above the surface [24]. This layer is related 

to adsorbed water and possibly could be a mixture of hydrogen-bonded water and 

adventitious carbon. Meanwhile clean alumina surface is Al-terminated or mixed 

Al/O-terminated surface. Such surface is highly reactive with water due to the 

undersaturation. Surface hydroxylation leads to significant surface relaxation with 

regard to hydrogen bonding. Saturated OH-terminated surface will have greatly 

decreased reactivity with water [24]. Because of this small atomic arrangement of 

outermost layer, aluminium surface becomes passivated and chemically inert 

(decreased surface energy). Moreover, the study by Gentleman and Ruud [25] 

showed that hydrophobicity is attributed to the increased hydroxylation of the 

surface. 

Al–O-terminated surface was obtained after plasma activation process (Fig. 

3.7, b). Such surface is likely to be energetically active and reacts with water very 

well due to high dipole moment and unsaturated surface bonds. In the case of 

reaction with water, Al surface will tend to bond with water molecules 

(dissociatively adsorb) and relax as soon as possible.  

Figures 3.8 a and b show the Al 2p spectra for unmodified and plasma-

modified Al powder, respectively. Two peaks were observed which are attributed 

to Al0 (Al–Al) and Al3+ (Al–O–Al and Al–OH) states. After plasma treatment the 

Al3+/Al0 ratio increased from 2.16 (Fig. 3.8, a) up to 2.77 (Fig. 3.8, b) which 

indicates the formation of Al/O terminated surface and is in agreement with O 1s 

peak analysis (Fig. 3). Moreover, metallic Al0 state slightly shifted to lower 

binding energy (from 71.7 to 71.5 eV) which indicated changes in chemistry (i.e.: 
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electrons density, structure of atoms in metallic state) of modified Al surface. This 

might be a fingerprint of vacancies and undercoordinated metallic structure [26]. 

As has been mentioned in the discussion of XRD and SEM results, hydrogen 

plasma can generate large amount of oxygen vacancies in a thin oxide layer and 

produce hydrogen–vacancies complexes which leads to the formation of open 

bonds (Al3+) and unsaturated Al structure. 

 

Fig. 3.8. Al2p peak fitting of unmodified (a) and plasma modified (b) Al powder at 250 

W, 8 cm for 1 h 

 

To sum up, hydrogen gas plasma initiates the following changes on the 

surface of Al powder: 

1. Slightly changed surface morphology – formation of micro cracks, 

bubbles and irregularities, increase in BET surface area (weakened 

barrier oxide layer and improved surface adhesion); 

2. Increase in free surface energy (improved Al activity); 

3. Plasma surface cleaning removes organic compounds, OH groups and 

break down C–C bonds (hydrophilicity effect and improved Al 

activity); 
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4. Reduced amount of non-polar and increased amount of polar molecule 

groups on the surface (hydrophilicity effect and improved Al activity). 

5. Formation of Al–O terminated surface which is reactive with water. 

6. Possible formation of vacancies and undercoordinated Al structures 

(open bonds) in the oxide barrier layer and at the Al–oxide interface 

which leads to the increased reactivity of Al powder with water. 

3.5. Hydrogen production after reaction between aluminium powder and 

water 

Hydrogen production using reaction between plasma activated Al powder 

and water, and reaction kinetics were investigated in 4 different cases: influence 

of plasma activation parameters; effect of water temperature; influence of sodium 

hydroxide amount; and effect of water amount used during the reaction. These 

factors have an effect on hydrogen synthesis and are mostly investigated in the 

literature using activated aluminium by other methods. 

3.5.1. Influence of plasma activation conditions on hydrogen synthesis  

Reactivity of modified Al powder in water was tested immediately after 

plasma activation and hydrogen yield after reaction with water is presented in Fig. 

3.9. Hydrogen production was measured for samples modified under altered 

activation conditions. Reaction was performed using 0.05 g of aluminum powder 

with 40 ml of water at room temperature of 23–25 ºC. Plasma modified Al powder 

showed the increased hydrophilicity and sank in water immediately after it reached 

the water surface. The small amount of 0.2 g sodium hydroxide (as reaction 

promoter) was dissolved in 100 ml of distilled water resulting 0.05 M NaOH 

(molar concentration). 

Plasma treatment decreased the concentration of OH groups and created 

Al/O-terminated surface. Furthermore, Liu et. al. noted that water molecules 

dissociatively adsorb at the defect sites of Al surface oxide [27]. 

Reaction behavior and the total amount of hydrogen produced are 

practically similar for all tested samples despite the conditions of plasma 

activation (power – 250 W, distance between sample and magnetron – 4 cm and 8 

cm, activation time – 1 h and 3 h). Maximum amount of hydrogen 60 ml ± 2 was 

produced in 619–740 seconds (Fig. 3.9). It means that 96 % of total theoretical 

hydrogen yield (1245 ml) could be reached. 
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Fig. 3.9. Hydrogen generation tested straight after plasma activation using 40 ml of water 

at temperature room temperature 

Ageing test showed that plasma modified aluminum powder remained 

highly reactive and easily reached 60 ml ± 2 ml amount of hydrogen in 743-786 

seconds even after 6 months of storage (Fig. 3.10). Of course, it needs to be 

mentioned that activated Al powder was stored in a closed vessel, avoiding the 

interaction with the environment. 

Compared to the Al powder tested immediately after activation, reaction 

started almost at the same time. However, the time of reaction when 60 ml of 

hydrogen was produced, increased up to 40–132 seconds. 

To sum up, hydrogen yield and kinetics did not depend on the mentioned 

plasma activation parameters (ionic current density 0.5 or 1.1 mA/cm2), while 

aging had only a modest effect on Al powders. 

It is worth to mention that when activated Al powder is stored in an open 

container and allowed to interact with ambient air, the hydrophilic surface of 

modified Al powder transforms to the hydrophobic. Perhaps surface undergoes the 

relaxation due to interaction with moisture and carbon compounds in the ambient 

air. 
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Fig. 3.10. Hydrogen generation tested after 6 months of storage using plasma modified Al 

powder and 40 ml of water at room temperature 

3.5.2. Effect of water temperature on the kinetics of hydrogen generation 

The yield of hydrogen produced (H2 yield vs. time) after unmodified and 

plasma modified Al powder reaction with water is presented in Fig. 3.11 a and b 

shows enlarged view of the reaction start. Small amount of sodium hydroxide 

(0.2g of NaOH) was dissolved in 100 ml of pure water in order to increase the 

concentration of OH groups slightly. The reaction was tested using 40 ml of water 

(with dissolved NaOH) at different initial temperatures (25°C, 30°C, 35°C and 

40°C) reacting with 0.05 g Al powder.  

Modified Al powder sank immediately after immersion into the water 

because of plasma induced hydrophilicity while unmodified Al powder floated on 

the top of water. The insight images show water drops placed on unmodified and 

plasma modified Al powder where contact angle drastically decreased from 121° 

± 5° to 38° ± 5° (Fig. 3.11, a). Change of cumulative H2 yield with increasing 

temperature was negligible in both cases. Modified Al powder produced 63 ml ± 

2 ml of H2 at 25°C of initial water temperature and 66 ml ± 2 ml at 40°C, whereas 

H2 yield of unmodified Al rised from 15 ml ± 2 ml to 20 ml ± 2 ml increasing 

temperature from 25°C to 40°C, respectively (Fig. 3.11, a). It is clearly seen (Fig. 

3.11, b), that induction time (until H2 generation starts) is decreased from 44 s to 

13 s for modified and from 190 s to 95 s for unmodified Al at water temperatures 
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of 25°C and 40°C, respectively. Increasing the initial reaction temperature results 

in enhanced Al-water reaction and higher H2 flow rate. Also it was observed that 

Al corrosion is very slow in cold water. 

Al-water reaction is highly exothermic which increase water temperature 

during the reaction as well: Al +3H2O → Al(OH)3 +1.5H2 + 426.5 kJ [28]. 

According to these results, it can be concluded that initial water temperature 

did not affect the produced hydrogen amount but has significant effect on the 

reaction kinetics. Water molecules reach metal aluminium faster at higher 

temperatures because aluminium oxide layer becomes more loosely (opening 

more pathways for water molecules). Also higher temperature increases diffusion 

rate of OH- ions through the oxide layer to the metallic Al. 

Lowering the H2 production temperature is important for portable fuel cell 

system designers. 

 

Fig. 3.11. Temperature influence on H2 generation using 0.05 g of modified and 

unmodified Al powder with 40 ml of water (0.2 g of NaOH dissolved in 100 ml H2O) (a) 

and enlarged view of reaction start (b) 
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3.5.3. Influence of sodium hydroxide amount on hydrogen generation 

Hydrogen generation using 0.05 g of Al powder with different NaOH 

concentration (0.12 g, 0.24 g and 0.43 g) dissolved in 50 ml of pure water is 

presented in Fig. 3.12. Different molar concentrations of 0.06 M, 0.12 M and 0.43 

M, were achieved with increasing amount of NaOH. Reactions started after 48 s, 

35 s and 22 s using 0.12 g, 0.24 g and 0.43 g of NaOH, respectively. Generated 

volume of H2 slighlty increased from 60 ml ± 2 ml up to 64 ml ± 2 ml with 

increasing molar concentration. Reaction was accelerated and hydrogen 

production rate increased as well. Modified Al powder reacted completely after 

745 s, 556 s and 384 s, respectively. Mobile OH- ions can migrate along the Al2O3 

surface of plasma-modified Al and damage it even more creating more pathways 

for water molecules. 

However, large amount of sodium hydroxide results corrosive environment 

and should be avoided. Hydrogen produced and supplied to the fuel cell under 

such conditions can eventually damage the proton exchange membrane. 

 

Fig. 3.12. Hydrogen production using 0.05 g of Al powder with different amount of 

sodium hydroxide dissolved in 50 ml of water: 0.12 g (a), 0.24 g (b) and 0.43 g (c) 

3.5.4. Influence of water amount on the hydrogen generation 

Fig. 3.13 shows hydrogen production yield after reaction between 0.05 g of 

Al powder and different volume of water (from 10 ml to 100 ml). In all cases 

slighlty alkaline water solution (0.05M NaOH) at temperature of 25 ºC was used. 

The reaction started after 75 s, 88 s and 82 s using 10, 20 and 30 ml of water, 

respectively. Meanwhile, reaction began in less than 1 minute after powder 
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immersion using 40, 50 and 100 ml of water. Hydrogen production yield was 17, 

29, 40, 60, 61 and 63 ml ± 2 ml with increasing the water volume from 10 up to 

100 ml, respectively. In the cases of small amounts of water (10, 20 and 30 ml), 

activated Al powder completely reacted with water and produced 50–60 ml ± 2 ml 

of hydrogen after 24 hours approximately. Such reduced reaction kinetics could 

be determined by two reasons: (1) less water with the same amount of Al powder 

means less OH groups which can disrupt aluminum oxide layer and maintain the 

reaction; (2) reaction kinetics could be reduced by the by-product generated during 

Al-water reaction, which mixes with pure Al powder and covers the surface by 

creating an additional barrier. 

 

Fig. 3.13. Hydrogen production using 0.05 g of Al powder and different volume of water 

(10 ml, 20 ml, 30 ml, 40 ml, 50 ml and 100 ml) 

3.5.5. Aluminium-water reaction mechanism 

Water molecules can be dissociatively adsorbed (2H2O → 2OH + H2 ↑) on 

the defect sites found in modified Al surface. During the Al-water reaction counter 

diffusion of ions through the modified oxide barrier layer may occur. Metal cations 

(Al3+) migrate outwards across the oxide layer while OH- ions migrate inward from 

the water (Fig. 3.14). The migration of ions is assisted by the high self-generated 

electric field in thin oxide layer (could reach up to 107 V/cm) which is created 

between negative ions on the outer layer and positive ions at the interface of Al–

oxide. Mobile OH- ions diffuse by oxygen vacancies in the oxide layer. Therefore, 

large amount of vacancies created by hydrogen plasma treatment induce effective 

diffusion of hydroxide ions (as well water molecules) through the barrier. 

At the beginning of Al-water reaction, hydrogen accommodates at the 

interface of Al-oxide while critical pressure is reached and hydrogen gas is 

released. Consequently oxide layer is disrupted and metallic Al surface is fully 

opened to water molecules leading to increased reaction rate. 
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Fig. 3.14. Reaction mechanism 

3.6. Electricity generation using proton exchange membrane fuel cell 

Application of in situ hydrogen generation using Al/water reaction in proton 

exchange membrane (PEM) fuel cell is very attractive due to low working 

temperature and non-hazardous by-product. Fig. 3.15 shows the voltage generated 

by PEM fuel cell during hydrogen evolution using plasma modified Al/water 

reaction.  

In this case, power generation starts shortly as aluminum-water reaction 

begins and an appropriate stable hydrogen flow is reached. Measurements were 

performed at different temperature points (25 ºC and 35 ºC) using 0.1 g of modified 

Al powder and 40 ml of water. Molar concentration of sodium hydroxide dissolved 

in distilled water ranged from 0.025 M to 0.1 M. It is clearly seen that the longest 

steady voltage generation was obtained using 0.1 M of NaOH (Fig. 3.15, a and b), 

while the lowest promoter concentration leads to unstable voltage generation due 

to insufficient hydrogen flow rate (Fig. 3.15, a). The generated voltage reached 1.2 

V after 30 s using 0.05 M and 0.1 M NaOH and after 100 s using 0.025 M NaOH 

at temperature of 25 ºC. Fast start-up of the fuel cell is one of the essential 

properties. 

Hydrogen generation rate caused the change of voltage values during the 

experiment. As the hydrogen flow rate decreased, the voltage of the fuel cell 

decreased as well. Raised initial water temperature (Fig. 3.15, b) leads to increased 

H2 flow rate which results slightly higher voltage value (1.3 V) achieved after 15-

20 s (Fig. 3.15, b). However, shorter electricity generation was registered. 

Additionally, it is worth to be mentioned that concentration of alkali should be 

kept as low as possible due to degeneration of PEM fuel cell membrane. 

When hydrogen is provided to the fuel cell, a contollable H2 flow rate is 

generally required for stable power generation. Control of reaction temperature, 

amount of OH- ions and reactant could regulate the produced hydrogen flow and 

reaction rate. The energy generated by PEM fuel cell was measured appoximately 

25, 50 and 70 mWh at 25°C and 20, 35 and 47 mWh at 35 °C using 0.025 M, 0.05 

M and 0.1 M, respectively. Thus the best result is 0.7 Wh / 1 g Al. This value could 

be increased using a suitable reaction vessel and controlling the hydrogen flow 

supplied to the fuel cell. Such technology could ensure safe and continious power 

generation for portable electronic devices. 
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Fig. 3.15. Electricity generation by PEM fuel cell after plasma modified Al powder 

reacted with 40 ml of water under different concentrations of NaOH at initial 

temperatures of (a) 25°C and (b) 35°C 

3.7. Synthesis of γ-aluminium oxide powder 

By-product of Al-water reaction could be used as a precursor for γ-Al2O3 

synthesis. In order to avoid additional impurities, plasma modified Al powder 

reacted with distilled water at temperature of 40 ºC, which led to increased reaction 

kinetics.  

SEM was performed to investigate the surface morphology of dried by-

product (Fig. 3.16, a and b) obtained after the aluminium/water reaction and the 

gamma alumina (Fig. 3.16 c and d) synthesised using heat pre-treatment. The 

surface morphology was similar during the transformations of the 

aluminium/water reaction by-product into the boehmite and γ-Al2O3 phases. The 

SEM images (Fig. 3.16; scale bar represents 100 μm) indicate agglomerations of 

the powder particles, which formed larger, irregularly shaped aggregates. The 

higher-magnification images (Fig. 3.16; scale bar represents 3 μm) reveal a porous 

surface where pores were connected to each other in all cases. Thus, large BET 

surface area is expected which is an important factor for the catalytic properties of 

γ-Al2O3. 
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The EDS results confirmed the presence of oxygen, aluminium, and a small 

amount of carbon in all the samples. No additional chemical impurities were 

detected. The oxygen/aluminium ratio decreased from 3.36 for the 

aluminium/water by-product to 2.05 for gamma alumina because of the 

dehydroxylation that occurred during heat pre-treatment. 

 

 

Fig. 3.16. SEM images of the initial by-product (mainly Al(OH)3) surface obtained after 

the aluminium/water reaction (a–b) and the gamma alumina surface obtained after the 

aluminium hydroxide was heated at 500 °C (c–d) 

The XRD analysis identifies the pure by-product of the aluminium/water 

reaction and the phase transition induced by the heat treatment. It indicates (Fig. 

3.17, a) that the by-product obtained after the reaction between the plasma-

modified aluminium and water was a mixture of aluminium hydroxide (Al(OH)3), 

boehmite (AlO(OH)), and a small amount of pure aluminium. Clearly, monoclinic 

Al(OH)3 (space group symmetry P21/a) was the predominant compound, with a 

crystallite size of 59.7 nm ± 2 nm. A small amount of pure aluminium was detected 

because of incomplete exothermic aluminium/water reaction. 

The gamma alumina phase was synthesised via the thermal dehydration of 

boehmite at 500 °C (Fig. 3.17, b). The desorption of surface hydroxyl groups and 

the loss of structural water led to the formation of γ-Al2O3 with a spinel-like face-

centred cubic structure (space group symmetry Fd-3m). The boehmite and 

aluminium peaks fully disappeared after the synthesis of the new phase. The XRD 

pattern was composed of several small and three well-defined diffraction peaks of 

γ-Al2O3 at 31.7°, 37.5°, 39.2°, 45.7°, 60.6°, and 66.7°, which correspond to the 

(220), (311), (222), (400), (511), and (440) reflections, respectively. The 

broadened peaks suggest that the synthesised product remained nanocrystalline. 
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The calculated mean crystallite size was 5.2 nm ± 1 nm. Additional broadening of 

peaks could be associated with the presence of defects. The XRD analysis does 

not reveal any characteristic peaks of new compounds, indicating high purity of 

the produced gamma alumina. 

 

 

 

Fig. 3.17. XRD results for the by-product obtained after the reaction between the 

modified aluminium powder and distilled water (a) and the complete transformation of 

aluminium hydroxide into gamma alumina after heating at 500 °C (b) 

The XPS spectra (Fig. 3.18) indicate the presence of carbon (C1s), oxygen 

(O1s), and aluminium (Al2p) on the surfaces of the initial by-product and the final 

product (gamma alumina). No impurities were detected; even on the nanoscale 

(depth and diameter of the measurement area were up to 10 nm and 100 μm, 

respectively). The carbon originated mainly from hydrocarbon that was desorbed 

during thermal treatment, resulting in the reduction of C1s from 8.2 to 3.1 at.%. 

The oxygen concentration decreased from 68.8 to 64.9 at.%, while the amount of 

aluminium greatly increased from 23 to 32.8 at.%. A deficiency of aluminium 

(actual ratio of Al2p/O1s = 0.51 vs. stoichiometric ratio of Al2p/O1s = 0.66) was 
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observed on the surface of the gamma alumina, which may be related to the 

creation of cationic Al3+ vacancies and/or deviation induced by carbon amount. 

 

Fig. 3.18. XPS surface elemental composition analysis for the initial by-product obtained 

after the aluminium/water reaction (a) and the gamma Al2O3 formed after the high-

temperature treatment of the reaction by-product at 500 °C (b) 

One of the most important parameters for high catalyst activity is a specific 

surface area, which depends on the amount of coordinatively unsaturated sites. 

Active catalytic species can be effectively dispersed on such a large specific 

surface area. The specific surface area of 206.8 m2g-1 obtained after the 

aluminium/water reaction increased to 247.9 m2g-1 after the gamma-alumina 

synthesis. This increase in the surface area corresponds to the decrease of the 

nanocrystallite size (XRD results). 

To sum up, nanocrystalline gamma alumina with a high purity and large 

specific surface area was successfully synthesised via the reaction between 

plasma-activated aluminium metal and water. The level of remaining impurities is 

negligible because the purity of the obtained gamma alumina depends only on the 

purity of initial aluminium powders, the working gasses used in the activation 

procedure, and distilled water. The price of manufacturing γ-Al2O3 can be lowered 

because of the production of high-purity H2, which can be used for high-efficiency 

generation of electrical energy, offering environmental benefits. About 2g of γ-

Al2O3 is received after 1 g of Al reacted with water. 
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CONCLUSIONS 

In this thesis, a naturally formed amorphous oxide layer on Al surface, which 

prevents reaction with water, was modified under low-temperature plasma 

treatment and analysed in order to find out the mechanism of Al activation. 

Generated hydrogen yield was determined during the experimental investigation, 

altering the reaction temperature, amount of NaOH and water volume. 

Transformation of reaction by-product to the product for secondary-use was 

performed. 

1. It has been experimentally found that plasma activation is effective using 

magnetron with Al target. Hydrogen plasma parameters: H2 gas pressure 13 

Pa, I = 1 A (P = 250 W), distance x between the magnetron and the sample 4 

cm ≤ x ≤ 8 cm (plasma becomes unstable at a shorter than 4 cm distance), ionic 

current density from 0.5 up to 1.1 mA/cm2, activation time – form 1 to 3 hours. 

Whereas, activation of Al powder is not uniform using electrodes as plasma 

generator instead of magnetron. 
 

2. Hydrophobic Al powder surface turns into hydrophilic because plasma 

changes only structure of the surface with decreasing amount of nonpolar 

molecules and increasing amount of polar molecules groups (XPS analysis). 

Ratio of polar/nonpolar molecules groups increased from 0.21 up to 0.45 after 

plasma activation. The reduction of OH groups (from 58 % to 18 %) and 

formation of Al–O terminated surface also has a positive effect on the Al 

reactivity in water (XPS and gas analyser). Inhomogeneously distributed 

defects were observed by SEM. Meanwhile XRD did not identify any 

significant structural changes. Also this technology can be applied for MgH2 

synthesis. 
 

3. Modified Al powder can produce about 96 % of theoretical hydrogen yield 

(1200 ml ± 2 ml / 1 g Al). Al-water reaction efficiency and kinetics are 

improved with increasing water temperature from 25 °C up to 40 °C, but 

reaction becomes very passive at the temperature below 15 °C. The ratio of 

Al/H2O is also an important factor (0.05 g Al + 40 ml H2O, it is the minimum 

amount of water required for the complete Al reaction in the shortest time). 
 

4. Al-water reaction is suitable for electricity generation using proton exchange 

membrane fuel cell. A PEM fuel cell (nominal power of 1.5 W) with a load of 

2 Ω can generate about 0.7 Wh of electricity using hydrogen produced after 

fully reacted 1 g of modified aluminium with water at temperature of 25 °C. 
 

5. Boehmite (AlO(OH)) was synthesised after Al-water reaction by-product was 

heated up at 280 °C under atmospheric conditions. While the nanocrystalline 

γ-Al2O3 was received after boehmite was heated up at 500 °C. BET surface 

area of γ-Al2O3 is 247.9 m2g-1 and crystallite size – 5.2 nm. Additional 
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impurities were not registered by XRD and XPS analysis, which indicates that 

especially pure γ-Al2O3 was synthesised.
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Reziumė 

Vandenilio sintezė panaudojant plazmoje aktyvuotų aliuminio miltelių ir 

vandens reakcijas 

Pastangos mažinant šiltnamio reiškinį sukeliančių dujų emisiją ir 

priklausomumą nuo ribotų iškastinio kuro išteklių skatina naujų, švaresnių 

alternatyvių energijos šaltinių kūrimą ir plėtrą. Pastaruoju metu vandenilio kuro 

elementai laikomi perspektyviomis energijos tiekimo sistemomis, galinčiomis 

prisidėti prie tvarių ateities energijos šaltinių plėtros ir į aplinką išskiriamo CO2 

kiekio mažinimo. Vandenilis pripažintas vienu geriausių energijos nešėjų, kuris 

sunaudojamas cheminę energiją verčiant elektros energija. Todėl daug dėmesio 

skiriama ir aplinkos neteršiantiems bei ekonomiškiems vandenilio gavybos 

būdams. 

Šiandieniniame pasaulyje nešiojami elektroniniai prietaisai tapo 

neatskiriama žmonių gyvenimo dalimi, o prietaisų funkcionalumas sparčiai 

progresuoja kiekvienais metais. Tačiau naudojamų akumuliatorių technologijos 

nesivysto taip sparčiai, kaip elektroniniai prietaisai, todėl negali užtikrinti 

reikiamos galios ilgesniam naudojimo laikui. Iš čia kyla poreikis ieškoti kitokių, 

efektyvių elektros energijos tiekimą užtikrinančių būdų. Verta paminėti, jog tai 

ypač svarbu karo pramonėje naudojamų prietaisų ilgaamžiškumui. Dėl didesnio 

energijos tankio, greito paleidimo ir geresnio efektyvumo PMM kuro elementai 

gali pagerinti elektronikos prietaisų eksploatavimo charakteristikas. Be to, kuro 

elementas veiks tol, kol bus tiekiamas vandenilis. 

Vandenilio kuro elementai gali būti naudojami tiek stacionariose sistemose, 

tiek nešiojamuose elektroniniuose prietaisuose. Tačiau, nors vandenilis turi didelę 

energetinę vertę, o šalutinis reakcijos su deguonimi produktas yra vanduo, praktinį 

pritaikymą nedidelės galios prietaisuose riboja brangios ir sudėtingos vandenilio 

gavybos ir saugojimo technologijos. Temos aktualumą parodo rinkoje jau esantys 

išoriniai krovikliai (Horizon MiniPak ir Inteigent Energy Upp) su integruotais 

kuro elementais. Be to, kompanija Apple taip pat patentavo vandenilio 

technologijų naudojimą išmaniuosiuose telefonuose ar planšetiniuose 

kompiuteriuose (US20150249280). Tiesa, juose vandenilis saugojamas 

brangiuose metalų hidriduose. 

Todėl minėtos vandenilio saugojimo ir transportavimo sistemos galėtų būti 

keičiamos į nedideles, vandenilio sintezės pagal poreikį (in situ) sistemas, tiekiant 

vandenilį, išsiskyrusį metalų reakcijos su vandeniu metu. Perspektyvia laikoma in 

situ vandenilio gavyba gali būti pritaikyta mažos galios nešiojamiems prietaisams, 

turintiems PMM kuro elementus, vykstant aliuminio ir vandens reakcijai. Tačiau 

Al paviršiuje natūraliomis sąlygomis susidaro vandenyje netirpus barjero 

sluoksnis, kuris stabdo vandens molekulių patekimą ant metalinės Al dalies. 

Atlikus naujausios mokslinės literatūros analizę, buvo aptikta daug 

informacijos apie skirtingus būdus, skirtus suardyti arba pakeisti barjero sluoksnio 
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struktūrą, ir apie technologinius Al ir vandens reakcijos taikymus elektros 

energijai generuoti. Nepaisant to, dauguma Al paviršiaus aktyvacijos metodų 

vadovaujasi brangių arba aplinką teršiančių papildomų medžiagų naudojimu bei 

labai aukštos temperatūros taikymu, o vandenilio sintezės procesas būna gana lėtas 

ir neužbaigtas (t. y. sureaguoja ne iki galo). Taigi, reikia kitokių, unikalių 

sprendimų, norint pašalinti arba pakeisti barjero sluoksnį Al paviršiuje, 

nenaudojant brangių priemaišų bei su kiek įmanoma mažesnėmis energijos 

sąnaudomis. Todėl, tuo tikslu, švariomis laikomos plazminės technologijos galėtų 

būti efektyviai naudojamos paviršiaus struktūrai keisti. 

Darbo tikslas – sukurti žematemperatūrės dujų plazmos aktyvacijos 

technologiją, skirtą aliuminio miltelių paviršiui modifikuoti, ir panaudoti gautas 

struktūras vandenilio, skirto elektros energijai generuoti, gavyboje iš vandens. 

Šiam tikslui pasiekti buvo numatyti tokie uždaviniai: 

1. Eksperimentiškai nustatyti optimalius aktyvacijos, skirtos aliuminio 

milteliams modifikuoti, dujų plazmoje parametrus (keičiant sąveikos 

laiką, dujų slėgį, išlydžio galią ir atstumą nuo plazmos šaltinio iki 

bandinio). 

2. Ištirti Al miltelių modifikavimo mechanizmą bei nustatyti Al miltelių 

paviršiaus pokyčių priklausomumą nuo keičiamų aktyvacijos plazmoje 

parametrų bei sąveikos laiko; 

3. Eksperimentiškai nustatyti modifikuotų Al miltelių reakcijos su 

vandeniu sąlygas, kurioms esant pasiekiamas didžiausias vandenilio 

sintezės efektyvumas (priedų, vandens kiekio ir temperatūros įtaka); 

4. Įvertinti elektros energijos generavimo galimybes, tiekiant Al–vandens 

reakcijos metu išsiskyrusį vandenilį į protonų mainų membranos 

vandenilio kuro elementą; 

5. Sukurti antrinį γ-Al2O3 produktą, skirtą katalizatorių rinkai, iš šalutinio 

Al–vanduo reakcijos produkto. 

Taip pat buvo suformuluoti ginamieji disertacijos teiginiai: 

1. Aliuminio milteliai yra efektyviai aktyvuojami bei tokiais išlieka 

mažiausiai 6 mėnesius po sąveikos su magnetrono generuojama, 

žematemperatūre vandenilio dujų plazma. 

2. Sąveikos su plazma metu hidrofobinis aliuminio miltelių paviršius 

virsta hidrofiliniu, padidėja polinių molekulių grupių koncentracija bei 

atsiranda nehomogeniškai pasiskirstę defektai. 

3. Plazmoje aktyvuotų aliuminio miltelių ir vandens reakcijos metu 

išsiskiria beveik 100 % teorinės vandenilio kiekio vertės, o reakcijos 

kinetiką daugiausiai lemia vandens temperatūra. 

4. Vandenilio gavyba, aktyvuoto Al ir vandens reakcijos metu, pagal 

poreikį gali būti pritaikyta nedidelės galios protonų mainų membranos 

kuro elementuose, skirtuose elektros energijai generuoti. 



46 

 

5. Neturintis priemaišų nanokristalinis gama aliuminio oksidas, kurio 

efektyvus paviršiaus plotas >200 m2/g, gaunamas atkaitinus šalutinį 

reakcijos – aktyvuotas Al–vanduo – produktą atmosferos oro aplinkoje. 

Įgyvendinus uždavinius ir apibendrinus visus atliktus tyrimus, susijusius su 

aliuminio miltelių aktyvacija plazmoje ir reakcija su vandeniu bei atsižvelgus į 

iškeltus ginamuosius teiginius, disertacijos darbo pabaigoje buvo suformuluotos 

pagrindinės išvados: 

1. Eksperimentiškai nustatyta, kad efektyvi plazminė aktyvacija galima 

naudojant magnetroną su Al katodu. Optimaliausi aktyvacijos vandenilio 

plazmoje parametrai: H2 dujų slėgis 13 Pa, srovės stipris I = 1 A (P = 250 

W), atstumas x tarp magnetrono ir bandinio 4 cm ≤ x ≤ 8 cm (esant 

mažesniam atstumui plazma tampa nestabili), joninės srovės tankis nuo 

0,5 iki 1,1 mA/cm2, aktyvacijos laikas nuo 1 iki 3 valandų. Tokiomis 

sąlygomis modifikuoti Al milteliai išlieka aktyviais bent 6 mėnesius, 

laikant juos uždarame inde. Tuo tarpu generuojant plazmą elektrodais, Al 

miltelių aktyvacija nėra tolygi. 

2. Hidrofobinis Al miltelių paviršius virsta hidrofiliniu, nes keičiasi tik 

paviršiaus struktūra, mažėjant nepolinių molekulių ir didėjant polinių 

molekulių grupių kiekiui (RSFS analizė). Polinių/nepolinių molekulių 

grupių santykis padidėjo nuo 0,21 iki 0,45 po plazmos poveikio. Be to, 

OH grupių kiekio mažėjimas (nuo 58 iki 18 %) ir Al–O ryšiais 

besibaigiančio paviršiaus susiformavimas taip pat turi teigiamos įtakos Al 

reaktyvumui vandenyje (RSFS ir dujų analizatorius). SEM buvo stebimi 

nehomogeniškai pasiskirstę defektai. RSD nefiksavo jokių reikšmingų 

struktūrinių pokyčių. Taip pat ši technologija gali būti pritaikyta MgH2 

sintezei. 

3. Modifikuoti Al milteliai yra pajėgūs generuoti 96 % teorinės vandenilio 

kiekio vertės (1200 ml ± 2 ml / 1 g Al). Reakcijos su vandeniu 

efektyvumas ir kinetika gerėja didėjant vandens temperatūrai nuo 25 iki 

40 ºC, tačiau esant žemesnei nei 15 °C, reakcija tampa labai pasyvi. 

Al/H2O santykis taip pat yra svarbus (0,05g Al + 40 ml H2O, tai 

mažiausias vandens kiekis, reikalingas visiškai Al reakcijai per 

trumpiausią laiką). 

4. Al–vanduo reakcija tinkama elektros energijai generuoti naudojant 

protonų mainų membranos kuro elementą. 1,5 W galios PMM kuro 

elementas, prie kurio prijungta 2 Ω apkrova, gali generuoti apie 0,7 Wh 

elektros energijos, naudojant išsiskyrusį vandenilį, visiškai sureagavus 1 

g modifikuoto aliuminio 25 °C temperatūros vandenyje. 

5. Iš šalutinio reakcijos Al–vanduo produkto atkaitinimo ore metu, 280 °C 

temperatūroje buvo susintetintas boemitas (AlO(OH)), kurį atkaitinus 500 

°C temperatūroje gautas nanokristalinis γ-Al2O3 junginys, skirtas 



47 

 

antriniam panaudojimui. Gauto γ-Al2O3 efektyvus paviršiaus plotas siekia 

247,9 m2g-1, o kristalitų dydis 5,2 nm. RSD ir RSFS matavimų metu 

papildomų priemaišų nebuvo rasta, o tai rodo ypač gryno γ-Al2O3 sintezę. 
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