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INTRODUCTION

Wind energy is one of the fastest developing renewable energy sectors in the
world and in Lithuania. 511 MW of wind power were installed in 2017. However,
such rapid development of wind turbines requires analysis of the possibilities to
connect wind farms to the national grid and more detailed estimation of wind
potential. Besides, wind power development is typically a challenge for the grid
operator because it causes issues of grid balance and requires reserves. The
solutions of this kind of problems are wind power prediction systems and
improvement of their accuracy.

Several main types of models are used for wind power prediction: time series,
statistical and physical models. Also, combined hybrid models can be used which
have been proven as giving the best forecast results. These models and forecasts
are used to predict the wind power output of a stand-alone wind turbine or a wind
farm. From various terms and categorizations of the prediction horizon, which
may be found in literature, there are three typical prediction horizons used: very
short-term — from several seconds to 1 hour, used for wind farm operation control,
short-term — 6 hours, midterm — 6-48 h, used for load determination and planning
in advance, electricity market, cost optimization, and long term (from 48 h to
weeks), used for planning of wind farm maintenance works and allocation of other
power generation sources.

Despite huge number of models and improvements in wind power forecasting
methods, wind power forecasts still suffer from relatively high errors, depending
on several factors, such as forecasting horizon, type of forecasting model, size of
wind farm and geographic location. Also, wind power prediction errors depend on
local topographical and wind conditions. As a result of this, it is very important to
analyse wind conditions, the dependence of power forecasting errors on local
topographical characteristics, and to find the best suitable methods for more
accurate wind power forecasting. It enables facilitation of wind turbines
integration into the power system in order to achieve the strategic goals set by
European Union and Lithuania.



Aim of the Doctoral Dissertation

To investigate factors determining wind power prediction accuracy and to
create a new hybrid method with increased wind power prediction accuracy.

Tasks of the work

1. To identify the best suitable methods for the wind speed distribution
approximation during different wind conditions.

2. To analyse influence of topographical conditions and wind characteristics
on wind power prediction accuracy.

3. To determine the most accurate functions for the approximation of the
power curves for wind turbines.

4. To identify the best suitable statistical methods for wind power forecasting.

5. To create new hybrid method for more accurate wind speed and wind power
prediction.

Scientific novelty of the work

A new hybrid wind power prediction methodology with detailed complex
evaluation of topographic and wind conditions is proposed.

Practical value of the work

A new hybrid model for long-term and midterm wind power prediction was
developed. Model can be used for wind resource estimation and for more accurate
wind turbine or wind farm power forecasting, in order to reduce power system
balancing, control and exploitation costs.

Statements presented for defence

» The best suitable tools for the wind speed distribution approximation are
Rayleigh’s and WAsP methods.

» Detailed evaluation of local topographical conditions allows to reduce wind
power prediction errors.

» Intensity of wind characteristics do not have direct relation with wind
power forecasting errors.

+ ldentification of the most suitable statistical methods improves wind power
forecasting accuracy.

+ Combination of statistical and physical methods is the best choice to reduce
wind power prediction errors.



Approval of the work

The material of the doctoral dissertation has been published in 2 articles in
journals included in “Clarivate Analytics Web of Science” database, and 2 papers
in journals registered in international databases. The material of the dissertation

has also been presented in 6 international scientific conferences, 2 of them took
place abroad.

Structure of the dissertation

The dissertation consists of introduction, 3 chapters, conclusions and a list of
references. The dissertation is compiled of 100 pages, including 53 figures and
25 tables. The list of references has 122 items.



1. LITERATURE REVIEW

1.1. Wind speed and power prediction methods

Global power consumption grew very rapidly during the last 15 years, and it is
forecasted that it will grow in the future as well, because new power generation
plants are necessary to meet increasing energy demands in the world and in
Lithuania. To compare, 24.5 GW capacity of new power plants were built across
the European Union in 2016, and renewables made 86% of that (Wetstone et al.,
2016). Wind energy is the most rapidly developing kind of renewable energy in
the world. However, wind power dependence on the wind volatility is one of the
most important issues compared to the traditional power generation. It complicates
the task of grid balancing (Jénsson et al., 2010; Ketterer, 2014). This situation
requires wind speed and power prediction systems, which are already used in a
number of wind power developing countries to facilitate the power balancing of
the system. Therefore, with increasing wind power share, more precise wind
power prediction methods are becoming necessary for successful integration of
wind power (Grassi et al., 2012; Park et al., 2015; Zhao et al., 2012).

Wind power prediction methods can be separated into two different
approaches. One of them is statistical methods and the second one — physical
power prediction methods (Fig. 1.1) (Wang et al., 2016). The first group covers
methods related to historical relations between variables, and they are most
suitable for short-term power prediction. The second group — physical approach
methods — are based on wind prediction from numerical weather forecasting
system, when the wind speed is corrected according to the local conditions and
converted to wind power (Fan et al., 2015; Zhang et al., 2014). Besides, hybrid
models, which integrate statistical and physical methods exist as well. But there is
still a lack of very careful evaluation of meteorological and topographic conditions
such as orography, roughness, wind shear and turbulence impact on the accuracy
of wind power prediction (Gallego-Castillo et al., 2015; Lei et al., 2009; McAuliffe
etal., 2012; Singh et al., 2009). The project presents analysis of influence of local
topographic conditions and statistical methods, and also indicates best tools for
short, mid- and long-term wind power forecasting.



Wind power

prediction
Statistical Physical
approach approach
Hybrid
approach

Fig. 1.1. Wind power prediction methods (Lei et al., 2009)

There are plenty of models used in the world for wind power prediction and
the truth is that there is no single best model for all cases because wind speed
variations are different in various geographic locations and efficiency of wind
speed conversion to power varies among different wind turbine manufacturers.
The main source of wind power prediction inaccuracies are the numerical wind
prediction models. Another source of errors comes from the wind power
conversion stage, i.e. wind turbine power curve model used (Fig. 1.2) (Giebel,
2011; Wang et al., 2011).

2. METEO FORECASTS;

»
>
to +1h +6h +12h +18h +24h +30h +36h... +48h

Fig. 1.2. The various forecasting approaches can be classified according to the type of
data input (Giebel, 2011)
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Despite improvements of wind power prediction models, annual wind power
prediction error reaches 7-8% in the world and in Lithuania (Matelionis, 2016).
To decrease the inaccuracy of power prediction it is necessary to analyse power
forecasting at different heights, choose optimal parameters, assess the most
suitable methods for approximation of the wind power curves and research
adoption of model output statistics for wind power prediction (Androulidakis et
al., 2015; Foley et al., 2012; Zhu et al., 2012).

1.2. Influence of topography and wind conditions on power forecasting

As it was mentioned before, wind speed variations are closely dependent on
topographical and wind characteristics. To explain the influence of topographical
factors on wind power prediction process, the boundary layer should be analysed
(Olaofe et al., 2013). The wind flows are exposed to topographical conditions,
such as surface, buildings, forest and so on. Moreover, thermal friction between
boundary and higher atmospheric layers also generates turbulence. Because of that
there is no linear relation between wind characteristics and power prediction errors
(Anetal., 2013; Jiang et al., 2011; Li et al., 2014).

The influence of surface roughness on wind speed profile can be described in
the following manner: in the beginning, roughness (trees) create internal boundary
layer; later, considering the obstacles, internal boundary layer is changing again
and every obstacle reduces wind speed, which can be estimated as sum wind speed
and shear coefficient (Kim et al., 2017a; Troen et al., 1989).

Considering topographical conditions, one of the most important parts is relief.
Relief variations influence wind speed changes. Wind speed changes regarding
relief variations (increasing height of relief) can be described in the following
manner: in the first step, wind speed decreases and wind profile changes, later
wind profile is constant. Finally, on the top of the hill, wind speed increases very
rapidly and wind profile changes very fast (Kim et al., 2017a).

Because of that the variations of wind speed are very significant, and it is
important to estimate wind speed changes in terms of relief variations. Detailed
evaluation of topographical conditions enables to increase the accuracy of power
prediction (Kim et al., 2017b; Sun et al., 2017).

1.3. Power curves modelling and statistical power prediction methods

The conversion process of wind speed to wind power by wind turbine power
curve is one of the key steps for accurate wind power prediction. Many different
techniques are used for modelling power curves. However, there are still huge
approximation errors. The most typical mathematical functions for nonlinear
power curve modelling are polynomial power curves (Chang et al., 2014; Pelletier
et al., 2016). Other commonly used methods are exponential power curve, cubic
power curve, as well as modified hyperbolic tangent (MHTan) function (Fig. 1.3),
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logistic function and neural network approach (Carrillo et al., 2013; Lydia et al.,
2014; Thapar et al., 2011) .

2000 |
o 1500t 1
=
i)
8 1000
E I A —— Power curve
- MHTan
500 |
0l . . . . i
0 5 10 15 20 25

Speed (m/s)

Fig. 1.3. Example of wind turbine power curve modelling (Taslimi-renani et al., 2016)

According to Carrillo et al. (Carrillo et al., 2013), exponential and cubic
approximations give higher coefficient of determination (R?) values and lower
error in energy estimation. In the approximation of cubic power curve, high values
of R? and low errors in energy estimation were presented. However, the
polynomial power curve shows the worst results mainly due to its sensitivity to
the data given by the manufacturer.

Review of the power curve models has revealed that most models are complex,
having many parameters to be estimated, dependent on several factors, which
require the application of multiple regression method or non-parametric
techniques. Nevertheless, most of them do not fit physical properties of power
curve, i.e. they exceed the maximum generated power of a particular wind turbine,
for instance, widely used polynomial or MHTan functions (Jiang et al., 2015; Jung
et al., 2014; Zolfaghari et al., 2015).

Statistical methods group for wind power prediction covers equations related
to factual and predicted data during period. They are best suitable for short-term
power prediction (Pinson et al., 2008). Most of them are auto regression functions
(1.1 equation), where relations between numbers are used. One of the most popular
is auto regression function, moving average function as well or both functions
including method, it calls ARMA (1.2 equation). Besides, it can be option, when
integrated moving average function is included and it calls ARIMA (2.12
equation) (Chen et al., 2014; Stathopoulos et al., 2013; Zhao et al., 2011).

Xy = Zf:l PiXe—itEe, (1.1)
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where: X —factual power (kW), x;_ predicted power (kW), & — error (kW).
Xe = ptee + X0 BiXeoy + X0, 05

where: X¢.1 — factual power (kW), x;_predicted power (KW), & er1error; 6y, ..., 0 —
mowing average parameter, 4 — average of factual data (kW), Bi — regression
parameter.

1.2)

1.4. Summary of analysed models

On a global scale, wind power generation is influenced by topographical and
wind conditions. On a regional scale, wind speed varies according to the
geographical location depending on the sizes of land and sea, and the presence of

mountains and plain areas.
Despite many improvements there are still many disadvantages of wind power
prediction methods (Table 1.1) (Liang et al., 2016; Tascikaraoglu et al., 2014).

Table 1.1. A brief comparison of main methods utilized for forecasting wind speed and

power in the literature (Tascikaraoglu et al., 2014

Wind
s]Peed/ power Advantages Disadvantages
orecasting
approach
Weakness in handling smaller scale
NWP models Appll_caple for I_onger phenomena,_ not sunab_le for short
prediction horizons forecast times, requires large
computational resource and time
Time series .
models (AR, clc_:)?:yat;tfil\?ec: tobc::i,c Requires a great deal of historic
ARMA, ARIMA, structgre ca a)tlnilit of records, difficult to model nonlinear
f-ARIMA, etc.) » cap Y problems and decide the best
correcting local
ANN-based 2. structure
for predictions
models
Gains knowledge from
training data, no need to
ANN-based specify any mgth(_ematlcal Requires a training procedure and a
model a priori, high data L
models . large number of training data
error tolerance, higher
adaptability to online
measurements
SVM-based High generalization Depen(_js on tuning the parameters
appropriately, complex optimization
models performance P
process and longer training time
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Wind
sfp eed/poyver Advantages Disadvantages
orecasting
approach
Suitable for systems
Fuzzy logic which are difficult to High complexity and a long process
models model exactly, relatively time in the case of many rules
less complex
Ability to handle missing
observations and to avoid
Bayesian the over fitting of data, Requires relatively more effort,
networks suitable for small training | depends on the user’s expertise level
data sets, suitable for
various input data

Wind power forecasting methods and wind power forecasts still suffer from
relatively high errors, depending on several factors, such as forecasting horizon,
type of forecasting model, size of wind farm and geographic location. Also
research (Kitous et al., 2012; Méhrlen et al., 2006) has shown that wind power
prediction errors depend on seasonal and diurnal wind variations, local
topographical and wind conditions. Due to this reason it is very important to
analyse forecast errors and their dependence on wind speed, local topographical
conditions and wind characteristics.

2. METHODOLOGY AND OBJECT
2.1. Object and characteristics
The object of the doctoral dissertation are wind power prediction methods,
power forecasting errors and factors influencing the prediction accuracy. The
object in four different wind farms in Lithuania was analysed. These farms are

situated in Western part of Lithuania. Western part of Lithuania is located on the
coastline of the Baltic Sea (Fig. 2.1.).
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Fig. 2.1. Wind farms where power prediction errors were analysed (1-Sudenai WF, 2-
Benaiciai WF, 3-Laukzeme WF, 4 - Ciuteliai WF)

Presented wind farms consist of turbines with different parameters, where hub
height varies between 78-108 m, power capacity of turbines varies between 2-2.75
MW and rotor diameters between 82-108 m. Considering the fact that different
numbers of turbines are placed in wind farms, total installed wind power of wind
farms was completely different with capacity between 14-39.1 MW (Table 2.1).

Table 2.1. Parameters of wind farms where power prediction errors were analysed

Installed Installed

ower of Number power of Hub

Name of WF | P WE of wind Model of WT wind height
turbines turbine (m)

(MW) (MW)
Benaiciai WF 34 17 Enercon E82 2 98
Ciuteliai WF 39.1 17 Enercon E82 2.3 108
Laukzeme WF 16.5 6 Vestas V100 2.75 100
Sudenai WF 14 7 Enercon E82 2 78
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2.2. Hybrid wind power prediction model

Designed wind power prediction method covers two main power prediction
periods — long term for the planning of wind turbines and wind resource
estimation; the second one — midterm (48h) — for wind power generation
forecasting. The second one consists of two approaches — physical and statistical.
The physical wind power prediction starts with the wind speed and wind direction
data from numerical weather prediction (NWP) system. Wind speed and wind
direction forecasted to 50, 80, 100 and 150 m height. In this case, a source of data,
NWP system - High resolution local area model (HIRLAM) - was used. For the
evaluation of local topographical conditions Wind atlas analysis and application
software 9 (WAsP) were used. Both programmes cover the resolution of 5x5 km
squares, and describe topographical conditions in squares. Statistical approach was
used for the wind power correction and it covers the 3 last steps (Fig. 2.2).

16



Long-term
wind power
prediction

Midterm
wind power
prediction

Wind
speed data
from NWP

L

Evaluation of topographical cond. and recalculating wind speed to hub

height of wind turbine

L |

Physical __
approach

Evaluation of wind characteristics and wind speed correction

-

Wind speed conversion to wind power

||

Wind power correction based on coefficients

P

Wind speed prediction for 3 h based on SARIMA function

-

Wind power correction based on Model output statistics

1}

Wind power

prediction for 48 h

Statistical
approach

Fig. 2.2. Scheme of hybrid wind power prediction method
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2.3. Data analysis methods

Weibull distribution is used for long-term wind speed and power estimation.
Mathematically, Weibull probability density distribution function used to describe
wind speed distribution has three parameters (Wais, 2017):

k 7o\ k-1 k
r0 =) ew |- ()] @)
where: ¢ — scale parameter; k — shape parameter; v — wind speed (m/s).
-1
OB ICH R A
k= ( Z?:ﬂ’zk n ) ' (2.2)
1
1
c= (33, k)" (2.3)

where: vi—wind speed (m/s); k=2.
For the evaluation of wind speed variation on different height, two formulae
are used (Landberg, 2001). Logarithmic:

lnzV—E
j— Zg .
Uve = UHIRLAM 7, ZHIRLAM * (2.4)
Zo
and exponential:
_ ZVE a. 2 5
Uyg = UHIRLAM Zmriam) (2.5)

where: unirLam — predicted wind speed (m/s); zve — hub height of wind turbine (m);
Zuiram — height where wind speed is predicted (m); a— roughness length (m).

Wind shear coefficient is estimated according to the following equation
(Alessandrini et al., 2015):

In(V2/V1)
=—=— 2.
n (hy/hy)’ (2.6)

where: V, and V1 —wind speed (m/s) in higher and lower layers; h, and h, — height
of higher and lower layers (m).

Turbulence intensity was evaluated according the following equation
(Alessandrini et al., 2015):

=2}

TI = 2% (2.7)

v

where: §,,- standard deviation of wind speed (m/s); v — average wind speed (m/s).
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Polynomial regression function in the analysed case is expressed as follows
(Bolinger et al., 2012):

P(V) =ay +av+a,ve +..+a,v"; (2.8)

where: p - estimated power (kW); v - wind speed (m/s), n - order of the polynomial,
a; -parameters of the polynomial function to be estimated (A;, R, i =0, 1, ..., n).
Sixth order polynomial function was analysed in the paper. The expressions of
other parametric functions used for power output estimation of wind turbine are
the following (Lydia et al., 2015)
il
B

P(V) = Prex | 1€ . p>0; (2.9)

—k
p(V)=pmax[l+(€n ., k>0; (2.10)

where: pmax - maximum power output of wind turbine (kW); e - exponential
function, a, b, k - parameters of the parametric functions to be estimated.

The analysed modified hyperbolic tangent function is given by:
ae®’ —ae

V) = +ay:
p( ) aseaGV + a7e_aBV 9 (211)

where: a; - parameters of MHTan function to be estimated (i- 1, 2, ..., 9).
ARIMA function is presented as follows (Hu et al., 2013):
Vi=oa+ ¢th_1 +...+ ¢th_p +..+ O+ ...+ qut_q + &t; (212)

where: a — constant term; ¢i — i-th autoregressive; 6; — j-th moving average
parameter; ¢ —error term at the time t; y; — value of wind power (m/s, kW) at time
t.

Model output statistics (MOS) method for predicted power correction is
described according to the following equation:

Pmos = a*P+b; (2.13)

where: P — predicted power (kW); a and b — statistical parameters.

19



In order to evaluate suitability of the analysed models, measure of normalized
mean absolute percentage error (nMAPE) is calculated in the following formula
(Hu et al., 2013):

NMAPE = £ §:|pi(P)_ pi(PX
nizt  p(NP)
where: p. - factual wind power (KW); p, - predicted power (kW); p(NP) -

nominal wind turbine power (kW).

-100%; (2.14)

3. RESULTS AND DISCUSSION

3.1. Long term wind resources prediction

In order to determine accurate conversion process of wind power, Weibull
distribution shape parameter k, and scale parameter c, four methods were used
(Table 3.1). For a detailed analysis, data from meteorological stations in West
Lithuania (Laukuva) was chosen (Fig. 3.1), where wind speeds are rather high
(about 4 m/s at the height of 10 m above the ground level). Furthermore,
measurement data collected in a continental part of the country location, in Varena
meteorological station, was used (Fig. 3.2).

0,2

[ —

%0115 Laukuva, h=10 m

c

=

Z‘O’l

2

0,05 I

= 0 Y=

%’ 1 2 3 4 5 6 7 8 9 10 11 12

a Wind speed, m/s
mmm Veasured —==—=@= LM MLMmod
=@ Rayleigh ® ~ WASP

Fig. 3.1. Comparison of Weibull distributions based on different methods for estimating
the distribution parameters for measured of wind speed data at 10 m height above the
ground level in Laukuva meteorology station

The obtained research data presented in Table 3.1 shows that most of the
methods are able to quite accurately determine Weibull parameters.
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Table 3.1. Estimated Weibull distribution parameters based on various methods and
measured wind speed data as Vi>0 in meteorological station of Laukuva in 2014 yearly

period
c, P, 2 RMSE, MAPE,
IMeted K m/s W/m? R m/s XG %
MLM 2,122 4,623 77,48 | 0,874 | 0,0221 | 0,00072 2,12
MLMmod 1,926 4.6 83,21 | 0,812 0,027 0,00104 9,68
Rayleigh 2 4,574 77,67 | 0,829 | 0,0257 | 0,00095 2,3
WASP 2,14 4.6 77 0,893 | 0,0224 0,0005 1,49

Peksper = 75,87 W/m? (Estimated experimentally)

However, the WASP method showed the best fit, and on the contrary, the
largest relative errors were given by only the modified maximum likelihood
method MLMmog.

0,35

Probability density function

0,3
0,25
0,2
0,15
0,1
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0
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MLMmod

Wind speed, m/s

e \\/ ASP

Rayleigh

Varena, h=10 m

Fig. 3.2. Comparison of Weibull distributions based on different methods for estimating
the distribution parameters for measured wind speed data at 10 m height above the ground

level in Varena meteorology station.

In the case of small mean wind speeds, better description of wind power
density distribution is received when Weibull parameters are calculated based on
Rayleigh method (Table 3.2). There is another wind flow regime because the wind

speed has more very low or zeros values.
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Table 3.2. Estimated Weibull distribution parameters based on various methods and
measured wind speed data as Vi>0 in meteorological station of Varena in 2014 yearly

period
Method | k & P, R? RMSE RS,
m/s W/m? ’ X? %
m/s
157
miv | B2 267 | 21,29 | 0815 | 00368 | 000135 | 12,60
1,68
MM | 18 270 | 1970 | 0831 | 00352 | 000124 | 423
Raﬂe'g 2'80 283 | 1845 | 0872 | 00305 | 000940 | 2,38
wAsP | 196 | 29 2000 | 0897 | 00275 | 000076 | 582

Peisper = 18,90 W/m? (Estimated experimentally)

More accurate methods for identification of Weibull distribution parameters
were sought for. This allowed finding a method that enables one to accurately
determine wind speed profiles, describe and assess wind energy resources in the
location. Statistically summarizing wind speed distribution data, Weibull two-
parameter probability density function enables to clearly indicate wind resources
for long term wind energy planning.

3.2. The influence of topographic conditions on power prediction accuracy

Wind farms in open areas by the coastline or higher relief sites usually are
located where a very flat site surface prevails. However, in many cases, it is
important to analyse and model local area surface roughness length in different
directions. The investigation of roughness length modelling in Sudenai and
Laukzeme farms was carried out. In Fig. 3.3 the comparison of combined and
“different by wind directions” roughness lengths are presented. It was noticed that
in case of usage of different roughness length depending on wind directions, wind
power prediction NMAPE was insignificantly lower. Considering North and West
direction in Laukzeme wind farm, power forecasting results were better, when
combined surface roughness length for modelling was used. However, in total,
better power prediction results were indicated in cases when roughness lengths
indicators considering wind direction were chosen. It can be seen that the
differences of power prediction errors were just up to 0.1%.
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Fig. 3.3. Comparison of wind power prediction errors modelling combined and selected
by direction roughness coefficients

As it was mentioned before, wind farms, where power prediction process and
errors are analysed, are located on the coastline of the Baltic Sea. There is scarcer
vegetation influenced by poorer soil. In order to analyse the influence of scarcer
vegetation for power prediction accuracy, different forest roughness length was
chosen: typical — 0.4, lower than typical — 0.2 and higher than typical — 0.5. The
analysis of power prediction errors with different forest roughness lengths in
Sudenai wind farm is presented in Fig. 3.4.

Sudenai \1/2)/F 1058
12,00 8,85 10,5310,56  10,65/10,69 93??,32 -
8 1000 73 8,84 | 8,89 % B % B3 . ,
Wogoo 737732 g % % Z
4,00 % /ﬂ % 7 /ﬁ
' D BB
2,00 7 7
North East South West Average
Wind direction :
# Forests roughness lenght 0,5 ® Forests roughness lenght 0,4

m Forests roughness length 0,2

Fig. 3.4. Comparison of wind power prediction errors modelling surface roughness based
on different trees coefficients in Sudenai wind farm
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The lowest power prediction errors were in East and South direction, when
0.2 value was used. To compare, North direction results were best with modelling
coef. 0.2 and 0.4, and West direction results were significantly better with coef.
0.4. The average wind power prediction errors present that in total the best suitable
forest roughness modelling coef. is 0.4.

Laukzeme WF

13,87

1288 1050 13,87| 13,88
2 12,00 108411102 10,48Y 1055 71 10,21(1)’4150,48
£ 10,00 6,47 %% 2 .
< 800 646647 é é Z
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4,00 7 7 %

0 o 0
e 7 a7 1
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Wind direction
# Forests roughness lenght 0,5 & Forests roughness lenght 0,4 m Forests roughness length 0,2

Fig. 3.5. Comparison of wind power prediction errors modelling surface roughness based
on different tree roughness coefficients in Laukzeme wind farm

The same investigation in Laukzeme wind farm was carried out. Better results
were identified in North, East and South directions with 0.2 modelling value and
in West direction result, where the same results were with modelling 0.2 and 0.4
roughness lengths were identified. To compare the average of power prediction
errors of all directions, 10.44% and 10.45% were with forests modelling lengths,
0.2 and 0.4 respectively.

The investigation of the influence of topographical variations on wind changes
and wind power prediction accuracy was made and presented in Table 3.3.
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Table 3.3. Wind power prediction errors including and not including the influence of
topography

Wind power prediction error, %

. . . Corrected Total
VEEGH || Sl || COEsEe ey speed | Corrected error
wind speed wind speed ; .

. by wind speed | reduction,
farm conversion by surface .
. percentage by terrain %
(wind speed roughness wind soeed chanaes
from NWP) length P g
changes
Laukzeme
12.25 10.45 10.26 10.2 2.05
WF
Sudenai
WE 11.01 9.31 9.28 9.16 1.85

To conclude this chapter, it is very important to comment on the table above.
It can be seen that direct wind conversion to power, from numerical weather
prediction systems generated 11-12.3% prediction errors. Including wind speed
correction coefficients, considering the surface roughness and terrain modelling,
decreased the forecasting errors down to 2%.

3.3. The influence of wind conditions on the accuracy of power prediction

Different wind conditions influence the wind power generation and wind
power forecasting errors. Wind power prediction errors and turbulence intensity
are presented in Table 3.4. It was noted that during mixed wind speed conditions,
turbulence intensity was the highest — 44% with power prediction NMAPE of
19.91%. To compare, during low wind speed conditions wind speed turbulence
intensity reached 41% with prediction nMAPE of 11.47%. In terms of high wind
conditions, turbulence intensity was 37.7% and wind power forecasting MAPE
was 17.07%. These results revealed that there is no dependence on wind conditions
and wind power forecasting error.
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Table 3.4. Estimated turbulence intensity and power prediction error in different wind

farms
Turbulence intensity, %
Name of Wind 50m ‘ 80m ‘ 100 m ‘ 150 m Average, Prediction
Farms % error, %
Low speed wind conditions
Benaiciai WF 44,63 | 39.35 | 36.75 33.06
Ciuteliai WF 47.29 | 43.00 | 40.48 36.81
40.95 11.47
Laukzeme WF | 47.71 | 43.09 | 41.03 38.03
Sudenai WF 4781 | 41.82 | 39.12 35.30
Mixed wind conditions
Benaiciai WF 45.94 | 43.18 | 42.04 41.48
Ciuteliai WF 42.11 | 40.34 | 40.02 40.91
44.01 19.91
Laukzeme WF | 45.60 | 43.04 | 41.97 41.59
Sudenai WF 51.33 | 48.91 | 49.65 45.98
High wind conditions
Benaiciai WF 34.56 | 37.28 | 36.18 34.56
Ciuteliai WF 43.06 | 41.44 | 40.57 38.92
37.68 17.07
Laukzeme WF | 38.13 | 36.33 | 35.30 33.83
Sudenai WF 40.57 | 38.67 | 37.60 35.86

3.4. Wind turbines power curves modelling
Wind speed conversion to wind power is a key pillar of any wind power

prediction model. It can be achieved by different techniques. In Fig. 3.6 four
parametric functions are presented (M1 - M).
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Fig. 3.6. Power curve approximations of different models (M1— blue, Mz — red, M3 —

green, Ma— purple)

Investigation of approximated power curve models Mi-M, are presented in
Table 3.5. The results demonstrate that Ms has the best fit to the initial data set,
comparing to the other analysed models: M3 gives the lowest value of MAPE of
the analysed models (Table 3.5) and corresponds to the physical behaviour of
generated power. In the analysed case, the models having more parameters do not
allow to achieve more accurate results, giving lower value of MAPE.

Table 3.5. MAPE of estimated models

Model . MAPE,
indicator Estimated power curve model %
M, p(v) = 3052.2 — 3286.6v +1402.9v2 —301.7v2 +34.9v* — 2.02v° +0.045v® 8.17
y 404
M V) =2050| 1—exp —| —— 13.86
2 p(v) (8.72j
—0.183
10.06\17-06
M p(v) = 2050 1+ 8.11
\"
7 —2804% 2835
M. b(v) = 0.938e +14.049% _97.001 8.18

—0.347e 728728/ _( 0p03e28008/
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On the contrary, the worst results have shown model Mz and this model is not
acceptable for power curve approximation (MAPE 13.86%). To compare model
Mi and My results are sufficient with MAPE 8.17% and 8.18%, respectively.

3.5. Statistical methods

Hybrid wind power prediction model involves statistical methods and
functions in order to improve forecasting accuracy. As it was mentioned before,
there are many statistical methods for power prediction, but one of the most
popular ones is auto regression with integrated moving average (ARIMA).
However, ARIMA method is not widely used for power generation, therefore it
was adopted to seasonal variations method and calls (S)ARIMA. The comparison
of these two methods is presented in Fig. 3.7.

20,00

15,00

nMAPE, %

10,00

5,00

0,00
3 6 12
Power prediction period, h

@ ARIMA SARIMA «-eevee Linijiné (ARIMA) Linijiné (SARIMA)

Fig. 3.7. Comparison of the accuracy of ARIMA and SARIMA models

It was noted that SARIMA model is more suitable for power generation with
lower power forecasting error. For the first 3 h, wind power prediction error was
8.85% and the differences between these methods were not significant. However,
for a longer period, the SARIMA model presented significantly better results. Due
to this reason, SARIMA was used for statistical power prediction.

Wind power forecasting process, based on statistical methods, is very
sensitive regarding the wind power volatility and wind periods. Power prediction
errors based on SARIMA method during different wind conditions are presented
in Table 3.6.
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Table 3.6. Wind power prediction error distribution during different wind
conditions periods

Wind power | \ind speed period (Low — L, High—H) | Average
prediction
period, h
L-L L-H H-L H-H

3 4.20 10.44 9.78 8.78 8.30
6 3.68 11.33 12.53 14.70 10.56
12 4.04 16.32 17.57 24.32 15.56
24 5.45 26.02 16.57 30.06 19.52
48 5.26 36.46 18.29 35.89 23.98

Average 4.53 20.12 14.95 22.75 =

It was noticed that during all kinds of wind periods, the increment of wind
power prediction errors is directly related to time horizon, when during the 3-48 h
ahead period nMAPE increased from 8.3% to 23.98%. To evaluate a short-term
time horizon, lowest errors were recognised during low wind speed period with
3.68% and the highest during high wind period with 14.70%.

Statistical wind power correction

In order to improve the power prediction accuracy statistical coefficients were
estimated and integrated. Three groups of coefficients were estimated and chosen,
and are presented in Table 3.7.

Table 3.7. Wind power forecasting including and not including correction coefficients

Correction Correction | Correction
coef. when coef. when | coef. when Total
Correction P<10 000 P<10 000 P<10 000 decreased
Period not kW - 0.85 kW 0.75 kW - 0.65 rediction
included and when and when and when P error
P>10 000 P>10 000 P>10 000
kW - 1.05 kW -1.15 kW - 1.35
1 7.04 6.30 8.12 8.73 0.74
2 8.72 8.65 9.33 9.96 0.07
3 3.52 3.54 5.46 5.50 -0.01
4 2.26 2.33 4.42 471 -0.06
5 7.96 7.84 9.87 9.64 0.12
Average 5.90 5.73 7.44 7.71 0.17
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Investigation of acceptance of different coefficients indicates that 0.75 when
P<10 000 kW and 1.15 when P>10 000 kW; 0.65 when P<10 000 kW —and 1.35
when P>10 000 kW power prediction errors were 7.44% and 7.71%, respectively.
Meanwhile, prediction error not including coefficients were 5.9% and it means
that the above-mentioned coefficients did not improve accuracy. However,
including correction coef. 0.85 when P<10 000 kW and 1.05 when P>10 000 kW
prediction error was the lowest — 5.73%.

Another statistical method for power prediction improvement calls Model
output statistics. The method is based on linear relation between predicted and
factual power during the period. The example of 36-days period to determine the
relation is presented in Fig. 3.8.

y =0,7683x + 419,78
MOS based on 36 days + = 07285
35000
~ 30000
£ 25000
=
5 20000
2
o
£ 15000
& 10000
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0

0 5000 10000 15000 20000 25000 30000 35000
Factual power, kW

Fig. 3.8. Relation between predicted and factual power for 36-day period

In order to maximise the forecasting accuracy, it is necessary to determine what
is the best suitable duration for identification of statistical method parameters. The
results of this investigation are presented in Table 3.8 and they revealed that the
best suitable duration is 6-12 days, comparing to 24-36 days. Besides, it was
estimated also for periods of 1-3 days and more than 36-day results, but
determination coefficient was less than 40%. It means that the relation between
predicted and factual power was weak. To compare, in the period of 6-36 days the
determination coefficient was in the limits of 0.65-0.75.

Considering the included and not included MOS method (6 days’ adoption
period) in Laukzeme and Sudenai wind farms, power prediction errors, not
including MOS, were 10.15% and 9.24%, including MOS 9.30% and 9.22%,
respectively. Meanwhile, during 12 days’ adoption period, in Benaiciai and
Ciuteliai wind farms errors, not including MOS, were 10.70% and 11.35%;
including MOS 6.20% and 10.25%, respectively.
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Table 3.8. Comparisons of wind power prediction errors including and not

including MOS
Number of days
for MOS Function R? nMAPE, %
estimation
Benaiciai WF
6 y =0.8144x + 711.82 0.72 11.69
12 y = 0.7833x + 457.09 0.75 6.20
24 y =0.7961x + 359.74 0.74 7.03
36 y =0.7683x + 419.78 0.73 14.58
MOS not included - - 10.70
Ciuteliai WF
6 y = 0.6676x + 1322.5 0.73 14.98
12 y = 0.6509x + 580.06 0.70 10.25
24 y =0.7295x + 416.18 0.68 14.72
36 y =0.7208x + 571.73 0.67 14.71
MOS not included - - 11.35
Laukzeme WF
6 y =0.8755x + 324.31 0.65 9.30
12 y =0.8323x + 312.89 0.73 12.33
24 y =0.8168x + 355.04 0.70 9.38
36 y =0.7917x + 325.48 0.70 9.49
MOS not included - - 10.15
Sudenai WF
6 y = 0.8616x + 8.8156 0.71 9.22
12 y = 0.8209x - 4.9589 0.75 10.81
24 y =0.7622x + 30.711 0.69 11.56
36 y =0.7258x + 5.7217 0.66 12.30
MOS not included - - 9.30
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3.6. Summary of power prediction accuracy improvements

Detailed investigation of topographical conditions and wind characteristics
was made, the statistical models for power curve approximation and wind power
forecasting were identified. The results of power prediction accuracy
improvements are presented in Table 3.9 and indicated up to 4.7% reduction in
wind power prediction errors.

Table 3.9. Summary of methods when power prediction errors were decreased

Methods used for the reduction of power Decreased power

prediction errors prediction error, %
Evaluation of detailed topographical conditions 2.01
Integration of SARIMA function 0.86
The most suitable power curve method identification 0.1
Wind power correction methods 0.17
Wind power correction based on MOS function 1.6
Total decreased 4.7

It was evaluated that the main method for power prediction errors is the
evaluation of topographical conditions, where power prediction error can be
decreased by up to 2%. In terms of statistical methods, SARIMA method can
improve power prediction accuracy by up to 0.9%, the best suitable power curve
approximation function 0.1% and statistical predictable power correction methods
by up to 1%.
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CONCLUSIONS

The analysis of topographical and wind conditions in the wind farm sites,
identification of the statistical methods for more accurate power prediction and the
developed new hybrid model enable to draw the following conclusions:

1. During low wind speed conditions, the best suitable tool for wind speed
distribution approximation is Rayleigh’s method (MAPE 2.38%). To compare,
during high wind speed conditions the best suitable method is WAsP with MAPE
1.49%.

2. Inclusion of different roughness length depending on wind direction in the
wind power prediction process allows to reduce power forecasting errors. Detailed
evaluation of topographical conditions improves wind power prediction accuracy
by up to 2 percent.

3. It was estimated that during mixed wind conditions period, wind shear is
the lowest (0.31) with the biggest wind power prediction error (19.91%).
Meanwhile, lowest wind power prediction errors (11.47%) were identified during
low wind speed period with wind shear coefficient of 0.35. During high wind
speed period, power prediction error was 17.07% with shear coefficient of 0.4.
The results identified there is no linear dependence between wind power
prediction errors and wind shear.

4. It has been determined that the most suitable method for wind turbine power
curve modelling is the parametric function (Ms) with error 8.11%.

5. The investigation of time series models revealed that the best statistical
function for power prediction is SARIMA and it is acceptable for 3-hour
forecasting with 8.3% error. Model output statistics method increases power
prediction accuracy by up to 0.7%.

6. The developed hybrid method predicts wind turbine power by up to 4.7%
more accurately, comparing to direct wind speed conversion from NWP data.
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REZIUME
Darbo aktualumas

Didéjant véjo elektriniy skaiiui Lietuvoje ir pasaulyje, sunkiai
prognozuojamas ir nuolatos kintantis véjo greitis sukelia elektros balansavimo ir
rezervavimo problemy elektros energetikos sistemoje (EES). Pagrindiné to
prieZastis — nepakankamai tiksliis véjo greicio ir véjo elektriniy generuojamos
galios prognozés modeliai bei metodai. Véjo elektriniy galios prognozavimo
procesas vadovaujasi véjo grei¢io prognozavimu, konvertavimu i véjo elektriniy
galig bei statistiniu galios patikslinimu. Siuose Zingsniuose galimos prognozavimo
paklaidos, todél biitina ieSkoti naujy tikslesniy metody bei veiksniy, turin¢iy jtaka
paklaidy susidarymui.

V¢jo elektriniy galios prognozavimas skirstomas | itin trumpalaike (iki 6
valandy), trumpalaikg (iki 24 valandy), vidutinés trukmés (iki 48 valandy),
ilgalaike (iki 72 valandy) ir itin ilgalaike (>72 valandy) prognoze. Kuo ilgesnis
véjo elektriniy galios prognozavimo laikotarpis, tuo didesnés prognozavimo
paklaidos yra gaunamos. Sios prognozavimo paklaidos gali biiti klasifikuojamos j
fazines (angl. phase error) ir amplitudines (angl. level error). Fazinés paklaidos
atsiranda dél staigaus véjo greiio kitimo laikotarpiu, kai nesutampa
prognozuojamos ir faktinés generuojamos véjo elektrinés galios fazés.
Amplitudinés paklaidos atsiranda tada, kai prognozuojamos ir faktinés véjo
elektrinés galios fazés sutampa, ta¢iau prognozuojamos galios verté yra mazesné
arba didesné uz faktine vert¢. Generuojamai galiai prognozuoti taikomi statistiniai
ir fizikiniai metodai. Itin trumpalaikiam (iki 6 valandy) galios prognozavimo
laikotarpiui tinkamiausi yra statistiniai metodai. Ilgesniam nei 6 valandy
laikotarpiui daugeliu atvejy tinkamesni fizikiniai galios prognozés metodai.
Taciau pasitaiko atvejy, kai prognozuojant véjo elektriniy galig vidutinés trukmés
laikotarpiui, tinkamesni yra statistiniai prognozavimo metodai. Todél labai svarbu
tirti jvairiy metody tinkamuma bei nustatyti prognozavimo paklaidas lemianc¢ius
veiksnius.

Lietuvoje vejo elektriniy galia prognozuojama 24 valandy laikotarpiui ir
sudaromas energijos gamybos bei vartojimo planas. Taciau, nesant pakankamai
tikslios véjo elektriniy galios prognozés, gaunamas netikslus energijos gamybos
planas. Todél valdant EES tinklg patiriama nuostoliy, kurie atsiranda tada, kai
pertekliné pagaminta véjo elektrinése energija yra parduodama uz Zemesn¢ nei
vidutiné rinkos kaina. Tokiu atveju, kai véjo elektrinés energijos pagamina maziau
nei planuota, reikalingi papildomi galios rezervai, kurie apskaic¢iuojami pagal véjo
elektriniy galios prognozavimo paklaidas. Tad siekiant uZztikrinti patikimg EES
darba bei sumazinti sistemos galios balansavimo ir rezervavimo kastus, svarbu
kuo tiksliau prognozuoti véjo elektriniy galia.

IStyrus véjo elektriniy galios prognozavimo paklaidy susidarymg lemiancius
veiksnius bei integravus optimalius prognozavimo metodus j bendra hibridinj
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prognozavimo metoda, buty galima tiksliau prognozuoti véjo -elektriniy
generuojama galig, sumazinti galios rezervo palaikymo kastus bei padidinti EES
patikimuma, o tai palengvinty véjo elektriniy integracijos plétrag jgyvendinant
Europos Sajungos ir Lietuvos strateginius tikslus.

Pavadinimas

Véjo elektriniy generuojamy galiy prognozés tikslumg lemianciy veiksniy
tyrimas

Darbo tikslas

Istirti véjo elektriniy generuojamos galios prognozés paklaidas lemiancius
veiksnius ir sukurti kompleksiSkai aplinkos salygas vertinancig bei tiksliau VE
generuojama galig leidziancig prognozuoti metodika.

UZdaviniai

1. Istirti v&jo galios tankio pasiskirstyma jvertinan¢iy metody tiksluma, esant
skirtingiems véjo grei¢iams.

2. Isanalizuoti topografiniy salygy ir véjo charakteristiky itaka véjo elektriniy
galios prognozavimo tikslumui.

3. Identifikuoti funkcijas, tiksliausiai aprasanéias véjo elektriniy galios
kreives.

4. Nustatyti tiksliausiai véjo elektriniy galig prognozuojancius statistinius
metodus ir parinkti tinkamiausias statistines priemones prognozavimo paklaidoms
mazinti.

5. Sukurti hibridinj galios prognozavimo metoda, leidziantj tiksliau
prognozuoti véjo greitj ir véjo elektriniy galia.

ISvados

Atlikta vietoviy, kuriose yra véjo elektrinés, topografiniy ir véjuotumo salygy
analizeé, nustatyti statistiniai metodai ir priemonés, skirtos tiksliau prognozuoti
véjo elektriniy galia, bei sukurtas hibridinis metodas leidzia daryti Sias iSvadas:

1. Istyrus véjo galios tankio pasiskirstyma jvertinanc¢iy metody tiksluma
nustatyta, jog esant mazam veéjo greiciui (< 4 m/s), tiksliausiai véjo grei¢io
pasiskirstymo funkcijos parametrus apraso Reiléjaus metodas (aproksimavimo
paklaida 2,38 %), o esant dideliam véjo grei¢iui (> 4 m/s) — tinkamiausias WASP
metodas (aproksimavimo paklaida 1,49 %).

2. Atlikus véjo elektriniy galios prognozés paklaidy tyrimus nustatyta, jog
prognozuojant véjo elektriniy galig tikslinga iSsamiai vertinti topografines salygas,
todel, kad tai leisty véjo elektriniy generuojamos galios prognozés tiksluma
padidinti iki 2 %.

3. IStyrus véjo charakteristiky jtaka VE galios prognozes tikslumui nustatyta,
kad néra tiesinés priklausomybés tarp véjuotumo charakteristiky ir véjo elektriniy
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generuojamos galios prognozés paklaidy, todél, kad didziausios prognozavimo
paklaidos (19,91 %) nustatytos, esant miSrioms véjuotumo salygoms, maziausios
paklaidos — mazo vé&juotumo laikotarpiu (11,47 %), o véjuotu laikotarpiu
prognozavimo paklaida sieké 17,07 %.

4. Istyrus véjo elektriniy galios kreives aprasanciy funkcijy tiksluma nustatyta,
jog tiksliausiai galios kreive apraSo parametriné funkcija, kurios salygojama
aproksimavimo paklaida siekia 8,11 %.

5. IStyrus tiksliausiai véjo elektriniy galia prognozuojancius statistinius
metodus nustatyta, kad tinkamiausias statistinis galios prognozavimo metodas yra
SARIMA. Sis metodas tinka itin trumpo laikotarpio (iki 3 valandy) VE galios
prognozei (paklaida 8,3 %). Taip pat jvertinta, jog taikant tiesinés regresijos
patikslinimo metoda, prognozuojamos VE galios tikslumg galima padidinti iki 1,6
%.

6. Sukurtas naujas hibridinis kompleksiskai topografines ir meteorologines
salygas jvertinantis metodas véjo elektriniy generuojama galig leidzia prognozuoti
iki 4,7 % tiksliau nei tiesiogiai konvertuojant skaitmeninés ory prognozés (SOP)
duomenis (véjo greitj) i1 VE galia.
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