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ABBREVIATIONS 

TBI - Traumatic brain injury 

ICP - Intracranial pressure 

OA - Ophthalmic artery 

ICA - Internal carotid artery 

CCA - Common carotid artery 

TDTCD - Two depth transcranial Doppler ultrasound 

US - Ultrasonic 

Pe - Added external pressure 

IOA - Intracranial ophthalmic artery 

OC - Optic canal 

EOA - Extracranial ophthalmic artery 

CFD - Computational fluid dynamics 

FSI - Fluid-structure interaction 

ALE - Arbitrary Lagrangian-Eulerian 

FEM - Finite element method 

MRI - Magnetic resonance imaging 

RBC - Red blood cells 

DNS - Direct numerical simulation 

AAA - Abdominal aortic aneurysm 

CSF - Cerebrospinal fluid 

CPP - Cerebral perfusion pressure 

IEL - Internal elastic lamina 

EEL - External elastic lamina 

3D - Three dimensional 

SEF - Strain energy density function 

CT - Computed tomography 

OCT - Optical coherence tomography 

DICOM - Digital imaging and communications in medicine 

ISO - International organization for standardization 
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NOMENCLATURE 

Notation Units Definition 

𝐴ICP 𝑃𝑎 amplitude of the intracranial pressure 

𝐴𝑃𝑒 𝑃𝑎 amplitude of the external pressure 

d𝐀 𝑚2 
infinitesimal oriented surface element in the material 

configuration 

d𝐚 𝑚2 
infinitesimal oriented surface element in the spatial 

configuration 

𝐴 𝑚2 surface area in the material configuration 

𝑎 𝑚2 surface area in the spatial configuration 

𝔞 𝑚 
coefficient for the Fourier fit of the maximum inscribed 

sphere radius 

𝒶 𝑚 cube side length  

𝛼  Womersley number 

𝐁𝓕 𝑁/𝑚3 body force in the material configuration 

𝐁  left Cauchy-Green tensor 

𝐛𝓕 𝑁/𝑚3 body force in the spatial configuration 

𝓑  continuum body 

𝒷 𝑚 deformed cube side length 

𝔟 𝑚 
coefficient for the Fourier fit of the maximum inscribed 

sphere radius 

𝛽 𝑟𝑎𝑑 fiber angle with respect to local circumferential component 

∆𝛽 % 

the percentage ratio between difference in fiber angle 

obtained with different fiber definition methods and the 

prescribed fiber angle 

𝑐10 𝑃𝑎 arterial wall parameter used in isotropic part 

𝒸 𝑚 deformed cube side length 

𝝌𝑝  
mapping from the load-free configuration to the loaded 

configuration 

𝝌𝑟𝑒𝑠  
mapping from the stress-free configuration to the load-free 

configuration 

𝝌𝑝  
mapping from the load-free configuration to the loaded 

configuration 

𝝌  
motion map (from the reference configuration to the current 

configuration) 

𝐂  right Cauchy-Green deformation tensor 

𝐜 𝑚/𝑠 
convective velocity defined as the difference between 

material and mesh velocities 

𝑐  arbitrary coefficient 

𝒟int 𝑊/𝑚3 internal dissipation 
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𝐝 1/𝑠 rate of deformation 

𝑑 𝑚 vessel’s lumen diameter 

𝐞 𝑚 basis vector 

𝜀 𝑃𝑎 deviation from the balance condition ICP = Pe 

𝛗𝑎  array of test functions 

d𝐟 𝑁 infinitesimal force vector 

𝐅  deformation gradient 

𝑓  arbitrary function 

𝓕 𝑁 force 

Γ  boundary 

ℎwall 𝑚 thickness of vessel wall 

𝐼1  
first invariant of the elastic right Cauchy-Green 

deformation tensor 

𝐼2  
second invariant of the elastic right Cauchy-Green 

deformation tensor 

𝐼3  
third invariant of the elastic right Cauchy-Green 

deformation tensor 

𝐈  identity tensor 

𝐼𝐶𝑃 𝑃𝑎 intracranial pressure 

𝐽  determinant of the deformation gradient 

𝑘 𝑁/𝑚3 spring constant 

𝑘1 𝑃𝑎 
stress-like material parameter used in the anisotropic part 

of the material  

𝑘2  
dimensionless parameter used in the anisotropic part of the 

material  

𝛋m  
mapping from the reference configuration to the material 

configuration 

𝛋t  
mapping from the reference configuration to the current 

configuration 

𝐊  arbitrary stiffness matrix 

𝒦 𝐽 kinetic energy 

𝜅 𝑃𝑎 bulk modulus 

𝐿𝑒𝑥𝑖𝑡 𝑚 outlet exit distance 

𝐋 𝑁 ∙ 𝑠 linear momentum 

𝐿 𝑚 length of vessel 

𝑙 𝑚 distance between simulated measurement locations 

𝜆  principal stretch 

𝐌  arbitrary mass matrix 

𝐌𝑓  fiber preferred direction tensor 

𝐦  fiber direction vector 

𝑚 𝑘𝑔 mass 

𝜇𝑓 𝑃𝑎 ∙ 𝑠 blood dynamic viscosity 
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𝜇 𝑃𝑎 stress-like material parameter 

𝐍𝑎  array of shape (trial) functions for the test functions 

𝐍𝑏  
array of shape (trial) functions for the arbitrary dependent 

variable 

ѵ  arbitrary approximate solution 

𝐍  normal vector in the material configuration 

𝐧  normal vector in the spatial configuration 

𝑁  shape (trial) function 

𝑛  number of arbitrary entries 

𝑂  origin 

∆𝑝 𝑃𝑎 
hydrodynamic pressure difference between two distinct 

simulated measurement locations 

𝑝𝑎𝑑𝑑 𝑃𝑎 
deviation due to mechanical non-equivalence between two 

distinct simulated measurement locations 

𝑃𝑑𝑖𝑠𝑡 𝑃𝑎 internal blood pressure at the outlet exit distance 

𝑃𝑣 𝑃𝑎 prescribed internal blood pressure waveform 

𝒫ext 𝑊 rate of external mechanical work 

𝒫int 𝑊 rate of internal mechanical work done by the stress field 

𝐏 𝑁/𝑚2 first Piola-Kirchhoff stress tensor 

P  
arbitrary particle in the continuum body in material 

configuration 

𝑃 𝑃𝑎 pressure 

𝑃𝑒 𝑃𝑎 external pressure 

𝑝 𝑃𝑎 pressure 

p  
arbitrary particle in the continuum body in spatial 

configuration 

𝛉Ω  unit vector defining circumferential direction 

Q  
arbitrary particle in the continuum body closest to the 

particle P 

q  
arbitrary particle in the continuum body closest to the 

particle p 

𝐑  rotation matrix 

𝐑𝑝  array of externally applied nodal point loads 

𝐫Ω  unit vector defining radial direction  

𝑅  radius in the material configuration 

𝑟  radius in the spatial configuration 

𝑅𝑒  Reynolds number 

𝜌 𝑘𝑔/𝑚3 density 

ƍ  dispersion 

𝑠Pe 𝑃𝑎 magnitude of the external pressure increase  

𝑠𝐼𝐶𝑃 𝑃𝑎 magnitude of the intracranial pressure increase 
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𝛔𝑚 𝑁/𝑚2 volumetric stress 

𝐒 𝑁/𝑚2 second Piola-Kirchhoff stress tensor 

𝑆 𝑚2 lumen cross-sectional area 

𝛔 𝑁/𝑚2 Cauchy stress tensor 

𝑡𝑖𝑛𝑖𝑡 𝑠 duration of initialization 

𝑡𝑃 𝑠 duration of external pressure loop 

𝑡𝑐 𝑠 duration of external pressure being constant 

𝐓 𝑁/𝑚2 traction vector in the material configuration 

𝐭 𝑁/𝑚2 traction vector in the spatial configuration 

𝑇 𝑠 time period 

𝑡 𝑠 time 

𝐮𝑏  array of arbitrary dependent variable on boundary nodes 

𝑢𝑚𝑎𝑥𝑚𝑒𝑎𝑛 𝑚/𝑠 the average of the blood flow velocity profile at the systole 

𝑢𝑚𝑎𝑥𝑝𝑒𝑎𝑘 𝑚/𝑠 
the maximum of the blood  flow velocity profile at the 

systole 

𝑢𝑚𝑖𝑛𝑚𝑒𝑎𝑛 𝑚/𝑠 the average of the blood flow velocity profile at the diastole 

𝑢𝑚𝑖𝑛𝑝𝑒𝑎𝑘 𝑚/𝑠 
the maximum of the blood flow velocity profile at the 

diastole 

u𝑣 𝐽/𝑚3 internal energy per unit current volume 

𝐔  right stretch tensor 

𝐔𝑑 𝑚 displacement in the material configuration 

𝐔𝑛  nodal unknowns 

𝑈  arbitrary scalar field 

𝐮 𝑚 displacement in the spatial configuration 

𝑢  arbitrary dependent variable 

𝒰 𝐽 internal energy 

𝛹 𝐽/𝑚3 the strain energy density function 

𝐯𝑏  array of arbitrary dependent variable on domain 

𝐕 𝑚/𝑠 velocity in the material configuration 

𝐯 𝑚/𝑠 velocity 

𝑉 𝑚3 volume in the material configuration 

𝑣 𝑚3 volume in the spatial configuration 

𝑤int 𝑊/𝑚3 
real physical rate of internal mechanical work per unit 

reference volume 

𝑤𝑓  
coefficient for the Fourier fit of the maximum inscribed 

sphere radius 

𝑤  weight function (test function) 

Ω  domain 

d𝐗 𝑚 material tangent vector of the material curve 

d𝐱 𝑚 spatial tangent vector of the spatial curve 

𝐗 𝑚 position vector in the material configuration 

𝐱 𝑚 position vector in the spatial configuration 



13 

 

𝜉  parametrization of the smoothed out centerline of the vessel 

𝐳Ω  unit vector defining axial direction 

∇  nabla operator 

   

  Subscripts: 

0  reference configuration 

𝐷  Dirichlet boundary condition 

𝑑𝑖𝑎𝑠  diastolic 

𝐸𝑂𝐴  extracranial segment of ophthalmic artery 

𝑓  fluid 

𝐼𝐶𝐴  internal carotid artery 

𝐼𝑂𝐴  intracranial segment of ophthalmic artery 

𝑖  index 

𝑖𝑛  defined on inlet boundary 

𝑖𝑛𝑖𝑡  initial 

𝑚𝑎𝑥  maximum 

𝑁  Neumann boundary condition 

𝑂𝐴  ophthalmic artery 

𝑂𝐶  optic canal of ophthalmic artery 

𝑜𝑢𝑡  defined on outlet boundary 

𝑆  cross-sectional area 

𝑠  solid 

𝑠𝑦𝑠  systolic 

t  current configuration 

𝑣  volume in current configuration 

𝑣𝑜𝑙  volumetric part 

𝑉  volume in reference configuration 

   

  Accents: 

̅   isochoric part 

 

NOTE: Symbols in bold sign vectors, or tensors or mapping functions, except cases 

commented directly in the text.  



14 

INTRODUCTION 

In the dissertation, the investigation of the blood flow in the ophthalmic artery 

is presented. It is part of the broader task of pulsating fluid flow in the compliant 

channel. The objectives and the tasks emerged in pursuance to investigate the 

conditions and to improve the accuracy of the non-invasive intracranial pressure 

measurement (nICP) method, which is based on the peculiarities of the blood flow in 

the ophthalmic artery. 

The blood flow system of the human, in principle, is a mass and heat transfer 

system, whose research requires consideration of not only the fluid dynamics, but also 

the dynamics of blood vessels and the interaction between blood flow and blood 

vessels. As with other cerebral vessels, the ophthalmic artery is affected by the 

intracranial pressure. However, at the same time, the part of the ophthalmic artery, 

which is outside the skull, is exposed to the external pressure. This unique feature of 

the ophthalmic artery is used in the nICP method and is the objective of this 

investigation. 

The intracranial pressure (ICP) is the dynamic pressure acting inside the human 

skull and for a healthy human being mean ICP is in the range from 2 mmHg to 15 

mmHg depending on age, conditions and patient-specificities. An ICP value outside 

these limits is a life threatening condition as it poses the risk of the secondary brain 

injury. The secondary brain injury can be caused in many situations of which here we 

name a few: the traumatic brain injury (TBI), which is one of the leading causes of 

disability and death worldwide, the intracranial and central nervous system tumors, 

infections after cranial surgery, prolonged stay in microgravity conditions, specific 

surgeries that requires a patient to lay with the head tilted down for an extended period 

of time, etc. In all of these aforementioned and in other cases one of the possible 

prevention methods of the secondary brain injury is the monitoring of ICP, which 

allows clinicians to resolve their further actions based on the available additional ICP 

measure. 

Until now, the gold standard method of the ICP monitoring is the use of the 

invasive ICP (iICP) intraventricular catheters; nevertheless this method pose the risk 

of complications, requires qualified neurosurgeons to perform it and the patient must 

be hospitalized. Hospitalization results in a delay of an additional ICP measure 

provision to the clinicians, which is very important to obtain during the first hour after 

the event. The disadvantages of the iICP monitoring methods led scientists to develop 

new non-invasive ICP (nICP) methods. 

One of the emerging nICP monitoring methods is based on the unique  

ophthalmic artery (OA) morphological property: commonly, the OA can be divided 

into three segments (Fig. 1): the segment that originates from the internal carotid  

artery (ICA) and resides in the intracranial space (IOA), followed by the segment that 

traverses the optic canal (OC), and the third segment that resides in the eye socket 

(EOA). Presumably, the ICP affects the IOA and OC segments, while the eye socket 

pressure affects the EOA segment. In addition, added external pressure (Pe) can affect 

the EOA segment in such a way that the information obtained by measuring the blood 

flow velocity in (IOA, OC) and EOA segments in turn can be translated into the value 
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of ICP. However, in order to extend its application into the clinical practice the 

accuracy of the nICP method must be increased. 

The accuracy of the nICP measurement depends not only on the properties of 

the device, but also on the properties of the object being measured (blood flow in the 

compliant OA affected by ICP and Pe). Therefore, the need of fundamental 

understanding of the pulsating blood flow in the OA when ICP and Pe affects different 

OA segments arises. 

Clinical research is too expensive or sometimes even impossible to perform, as 

for example up till now, the absolute value of blood flow velocity cannot be measured 

credibly as it depends on the angle of measurement. With the advent of the 

sophisticated computational methods and available computing power, numerical 

simulations of this type are now possible. However, many factors influence the 

model’s ability to simulate the physical system. 

Previous investigations have not considered the patient-specific curvature of the 

ophthalmic artery, which can be an important factor affecting the blood flow and the 

accuracy of the non-invasive intracranial pressure measurement. Therefore, the aim 

of the research - by means of the numerical method, determine the dependencies of 

the blood flow of the compliant curved (patient-specific) ophthalmic artery based on 

additional external pressure applied when using the non-invasive intracranial pressure 

measurement method. The object of the research - the blood flow in the compliant 

patient-specific ophthalmic artery exposed to the additional external pressure applied 

when using the non-invasive intracranial pressure measurement method. 

To achieve the research aim it was necessary to develop a method for the 

modeling of the patient–specific ophthalmic artery using the state-of-the-art artery 

wall material model by forming a vector field that models the fibrous structure of the 

artery wall. 

In order to achieve the goal, the following research objectives were raised: 

 Develop a method for the formation of the uniformly directed fiber 

structure, that is independent of the material model. 

 Determine the dependencies of the arterial blood flow on the intracranial 

pressure, modeled measurement distance and the added external pressure. 

 Determine the dependencies of the systematic deviation of the non-invasive 

intracranial pressure measurement on the prescribed intracranial pressure 

and distance according to the differences of cross-sectional areas and 

average blood flow velocities. 

 

Scientific novelty 

The dependencies of the standard deviation of the differences of the average 

blood flow velocities and the cross-sectional areas of the ophthalmic artery from their 

over the heartbeat pulse period averaged values on the acting pressures and the 

distance were determined. 

 

 

 



16 

Practical value 

The established dependencies of the blood flow of the ophthalmic artery can be 

used to increase the accuracy of the non-invasive intracranial pressure measurement 

method. Developed numerical model can be adapted to solve various compliant 

material-fluid interaction problems. 

 

Statements carried out for defense 

 

1. Developed method produces directly uniform fiber structure that is independent 

on the material model. 

2. By increasing the added external pressure, the minimum standard deviation of 

the cross-sectional area difference, from over the heartbeat pulse period 

averaged cross-sectional area difference, will be obtained at a larger distance. 

3. The standard deviation of the mean blood flow velocity difference, from over 

the heartbeat pulse period averaged mean blood flow velocity difference, is 

proportional to the distance. 

4. By increasing the added external pressure or with the increasing  intracranial 

pressure, the standard deviation of the mean blood flow velocity difference, 

from over the heartbeat pulse period averaged mean blood flow velocity 

difference, increases. 

5. By increasing the prescribed intracranial pressure, the systematic deviation of 

the intracranial pressure obtained during the modeled measurement decreases. 

6. By increasing the distance between the measurement locations, the systematic 

deviation of the intracranial pressure obtained during the modeled measurement 

increases. 

 

Scientific approval 

The results presented in this dissertation were published in 3 scientific articles, 

of which 2 are published in a journals with an impact factor that is referenced in the 

“Clarivate Analytics” “Web of Science” database, the third is published in the 

scientific journal, registered in the international scientific information databases. The 

results were also presented in 8 conferences, 5 of which were international. 

 

Structure and content 

The content of the dissertation is as follows: the introduction, where the problem 

is defined, followed by the literature review, where the newest scientific articles are 

reviewed that is relevant to the problem followed by the methods chapter that mainly 

highlights the continuum mechanics, finite element method and presents the research 

methodology based upon which the numerical studies are performed and the results 

are presented in the consecutive chapter. In the last chapters the conclusions and the 

list of referred scientific literature.  
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1 LITERATURE REVIEW 

Today, one of the leading causes of disability and death worldwide are severe 

traumatic brain injuries (TBI), especially among children and young adults. Each year, 

around 7 million cases of TBI are recorded, and it is calculated that by the year 2020, 

this threat will become number one among fatal injuries (Roozenbeek et al., 2013). 

Intracranial and central nervous system tumors are the 17th most common cancer type 

worldwide, with more than 256,000 new cases diagnosed in 2012 (Torre et al., 2015). 

Infections after cranial surgery are also very serious threats that require immediate 

recognition and treatment (Dashti et al., 2008). Microgravity conditions could affect 

the human body’s fluidic system, which in turn affects intracranial pressure (ICP), 

leading to vision deterioration or even vision loss (Hargens et al., 2013). 

Clinically, only the secondary brain damage can be prevented, as the only 

prevention of primary head injury is higher self-awareness. Secondary brain damage 

is caused by excessive brain swelling. Human skull, once the sutures and fontanelles 

have been closed, becomes a structure that permits no further expansion; 

consequently, the internal volume is negligibly dependent on ICP (Rodríguez-Boto et 

al., 2015). ICP is the pressure inside the human skull and thus in the brain tissue and 

cerebrospinal fluid. The increase in ICP could be acute or chronic (Asiedu et al., 

2014). For a healthy adult in the supine position, normal ICP values are in the range 

between 7 mmHg and 15 mmHg (Steiner et al., 2006), for children between 3 mmHg 

and 7 mmHg, for term infants from 2 mmHg and 6 mmHg, and for pathological 

patients, ICP can exceed 25 mmHg (Dunn, 2002). 

ICP is a result of interactions among internal constituents, such as arterial blood, 

venous blood, cerebrospinal fluid, and brain tissue. Brain tissue is sensitive to blood 

flow dynamics, and several mechanisms (metabolic, myogenic, and neurogenic) are 

involved in maintaining the appropriate cerebral blood pressure. Within certain limits, 

a human body utilizes auto regulatory mechanisms of ICP, which is also known as the 

Monro-Kellie hypothesis (Mokri, 2001). When the auto regulatory mechanism fails, 

secondary brain damage may occur. 

In aforementioned situations, adequate patient monitoring can help in 

prevention of the secondary brain damage and could enable making clinical decisions 

in a timely manner. Intracranial pressure can be monitored invasively and 

noninvasively. The gold standard for ICP measurement is the use of intraventricular 

catheters that are connected to an external pressure transducer; nevertheless, this 

invasive method increases the risk of complications (Hickman et al., 1990). Invasive 

methods have only proven to be accurate in short term, due to the need of calibration 

- a zero drift is a common problem (Dashti et al., 2008), also implementation of 

invasive methods requires qualified neurosurgeons (Dashti et al., 2008). Therefore, an 

accurate and certified nICP measurement method is needed. There are several 

proposed nICP measurement methods, such as numerical modeling, medical imaging, 

the implementation of the impedance mismatch principle, etc. (Raboel et al., 2012, 

Asiedu et al., 2014, Padayachy, 2016). One of the most promising nICP measurement 

method among them uses ophthalmic artery as a sensor to safely monitor intracranial 
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pressure (Ragauskas et al., 1999, 2005). As result, the ophthalmic artery (OA) 

becomes a very important sensor that provides information about the brain state, a 

sensor that can be used to determine the causes, course, and consequences of illnesses, 

for example glaucoma (Siaudvytyte et al., 2015). 

OA supplies oxygenated blood to the eye. In most cases, it is the first intracranial 

bifurcation of the internal carotid artery (ICA), which in turn arises from the common 

carotid artery (CCA), which bifurcates from the abdominal aorta (AA). OA starts 

inside the cranium and traverses the optic nerve canal to the eye socket, which is 

outside the skull (Ho et al., 2012) (Fig. 1). 

 

Fig. 1. The nICP measurement scheme. A special mask that consists of a rigid chamber with 

a deformable thin plastic film and an ultrasonic (US) transducer is placed on the patient’s 

head. While the Pe is being applied on the EOA segment, the US transducer measures the 

velocity of blood flow in the IOA and EOA segments and sends the data to a TDTCD device 

for processing. Figure reproduced from Fig. 1 in (Misiulis et al., 2017) 

The nICP measurement method is based on the simultaneous measurement of 

the blood flow velocity in the OA at two distinct locations using the two-depth 

transcranial Doppler ultrasound (TDTCD) technique: in the intracranial space of the 

OA (IOA) and in the eye socket, EOA. Additional external pressure Pe is introduced 

in the cushion of the special head mask, tightly enclosing the area around the eye. 

Head mask and measurement equipment consists of several devices in which 

the most vital are external air pump, inflatable cushion, rigid chamber, ultrasound 

device and a signal-processing unit. During ICP measurement, the air is regularly 

pumped (approximately increasing Pe by 2 mmHg on every 10-heart pulses) to the 

inflatable cushion of which part of a surface surrounds the eye while the other part is 

enclosed by a rigid chamber. Measurements of blood flow velocity in IOA and EOA 

segments are performed by ultrasound waves generated by Two Depth Transcranial 

Doppler (TDTD) device that is mounted on a head mask’s rigid chamber while being 

enveloped by the cushion. It should be oriented towards OA in the optimum manner, 
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although this optimum manner is still in question and requires its own research. 

During the blood flow, measurement the obtained velocity value is dependent on the 

angle between the incident ultrasound beam and the blood flow direction, therefore 

the relative blood flow velocity is obtained. Recorded signals representing a relative 

blood flow velocity profile are transferred to a signal processing unit where, based on 

the balance principle (Ragauskas et al., 2005), further data operations are made to 

obtain the ICP value. 

In the balance principle, it is postulated that when the added external pressure 

Pe is close to ICP then the values of measured blood flow velocity in IOA and EOA 

segments are also approximately equal. 

A working device for the nICP monitoring was created and is already patented 

in Europe and USA (Ragauskas et al., 1999, 2013, Chomskis et al., 2011). The device 

was practically tested and validated through an in vivo TDTCD measurements and the 

results were compared with the invasive methods (Ragauskas et al., 2005, 2012, 

Siaudvytyte et al., 2015), including the “gold standard” ventricular ICP method 

(Krakauskaite et al., 2016). In order to extend the device usage in the clinical practice, 

the accuracy of the nICP measurement must be improved. According to the 

ANSI/AAMI standards, the accuracy of the ICP measuring device should not exceed 

±2 mmHg in the range of 0–20 mmHg, and in the range of 20–100 mmHg, the 

maximum error should not exceed ±10% (Kawoos et al., 2015). Further device 

improvements e.g.: increase in precision, extension of its capabilities and 

applicability, requires fundamental understanding of a pulsatile blood flow in a 

compliant OA and its interaction with surrounding tissues when the outer wall of OA 

is exposed to varying pressures. Experiments in vivo are too expensive or even 

impossible to perform, while the numerical simulation of the blood flow in the 

compliant OA in situations close to those encountered during the nICP measurements 

allows performing the accuracy assessment of the nICP measurement method. 

The problem requires a multidisciplinary approach incorporating the blood flow 

(hemodynamics, computational fluid mechanics (CFD)), arterial compliance 

(nonlinear solid mechanics, biomechanics) and its constitutive models (fiber-

reinforcement linked to the internal collagen structure), blood flow-arterial tissue 

interaction (fluid-structure interaction (FSI)) and in this case for the large 

displacements and large deformations the arbitrary Lagrangian-Eulerian (ALE) 

formulation, numerical procedures (finite element method (FEM)) all of which 

diverse from the continuum mechanics, in addition, knowledge about the human 

cardiovascular system, blood properties, intracranial pressure inside the human head, 

artery wall structure and its mechanical behavior, geometry reconstruction techniques 

from medical imaging, evaluation of prestress that is common to arteries and the 

morphological properties of OA. 

In the next sub-chapters, we will present the literature review that is required to 

define the physical problem based on the state of the art knowledge in the respective 

scientific fields. 
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1.1 Human cardiovascular system 

Human cardiovascular system is the momentum, energy and mass transport 

system. The momentum of the blood stream is generated by the heart muscle 

contraction, in which the chemical energy is converted to the bulk kinetic energy. 

Energy transfer is due to the molecular kinetic energy (temperature) transfer. Mass 

transfer is mostly happening in the capillaries where there is an exchange of oxygen 

and carbon dioxide or any other molecular species (generally nutrients and waste 

exchange). 

Blood circulatory systems between humans differ by their spatial configuration, 

path variations, mechanical properties, etc. From here, we can take statistical approach 

and evaluate a large number of people to generate database, which further can be used 

for preliminary predictions. Notably, in scientific articles, artistically designed 

variations of a part of human vessel networks are given with percentage marks that 

describe the chance of finding a particular vessel network path variation (Hayreh, 

1962a, 1962b, 1962c, 2006). Many investigations were carried out where the 

mechanical properties of various arteries for a large group of people were measured, 

and it was found that they depend on the location in the human body (or otherwise 

depends on the artery) (Riley et al., 1992, Kamenskiy et al., 2012). The blood flow 

rates at different cardiovascular system’s segments were measured and statistical data 

was obtained (Holdsworth et al., 1999, Khamdaeng et al., 2012). Although the 

statistical approach has its own benefits, the only way to investigate and predict with 

higher detail is to include patient specific information as differences in human bodies 

are not only within the vessel networks, but also within any other bodily systems. 

Depending on the problem these differences sometimes can be neglected, but 

sometimes are crucial and must be seriously considered. 

Not only do every human body is different but also many interdependencies 

coexist in live human being and change in one may have a substantial effect on the 

other. In addition, external stimuli can have a profound effect on the body’s inner 

workings. 

We must note that different size scales of tissues composing human body exist. 

We can evaluate human system as composed of organs and form macroscopic 

equations. However, at some point we will have to take into account cells – the 

buildings blocks of human organs, here we might need to construct microscopic 

equations to predict system behavior. In addition, at some point we will have to take 

into account the molecular structure where we need to construct equations based on 

the kinetic theory. So the human body is a specific, multi-scale, inter- and extern- 

dependent ever changing system. 

For these reasons, human body is one of the hardest systems to investigate and 

predict. The main limiting factor is the computing power, for which to simulate the 

whole multi-scale human body is a tremendously demanding task. In addition, the 

acquisition of all the patient specific data would be an extreme challenge, and to 

worsen things everything must be done in such a way that would not influence the 

system itself, which is extremely counteractive. If we consider only the vascular 

structure alone there exists great progress made on robust vascular network 
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extractions from medical imaging data (Gould et al., 2017), but even acquiring only 

the vascular network data is still a very time-consuming task, and requires experts in 

this field. Vessel resistance is strongly dependent on vessel radius, and so the extreme 

accuracy of geometry reconstruction of vessel network is needed to compute accurate 

blood flow field. 

To cope with this problem one of the solutions is to form a numerical model, 

such that would require the least amount of computing power and would be able to 

reproduce empirical data (high fidelity local phenomena, or simplified global 

phenomena) in some range of the variable parameter or parameters. To accomplish 

such thing lumped numerical models are created, where only the local problem within 

a lumped volume is further investigated, usually, at the macroscopic level. To have as 

much realistic system as possible the adequate boundary conditions is the key problem 

(Lorthois et al., 2011). Boundary conditions of blood flow are usually defined by 

artificial networks (Su et al., 2012, El-Bouri et al., 2015, 2016) that are based on the 

electric scheme analog with various analogous items: resistors, capacitors and 

inductive bands. 

One of the simplest model is the windkessel model, which uses few lumped 

parameters to define the overall behavior of blood flow in a large number of vessels 

(Mandeville et al., 1999, Buxton et al., 2004, Segers et al., 2008, Zheng et al., 2009). 

The lumped parameter models are limited by their simplicity and the difficulty to link 

problem with the network physiology. Some authors use a constant pressure boundary 

conditions, which are the simplest of all to implement and based on the problem can 

have negligible effect on the solution. Other authors use bifurcating vessels as their 

vascular network scheme (Payne et al., 2018) but in these models no spatial 

information is considered. 

Arterial elasticity dampens the arterial pulse pressure wave maintaining stable 

blood flow throughout the cardiac cycle. As the walls of larger arteries contain elastin 

fibers, they distend during systole, and recoil during diastole. In addition, due to 

distant vasculature resistance the net blood flow in elastic region is higher, which 

means that during systole a net storage of blood accumulates in the elastic arteries. 

This accumulated blood is discharged during diastole assisting in the maintenance of 

organ perfusion. Although windkessel effect is extensively used in blood flow 

modeling it is superseded by the modern ideas, which interpret arterial pressure and 

blood flow waveforms in terms of wave propagation and reflection (Nichols et al., 

2011). There are also proposed  methods that encompass both effects (Schaafsma, 

2014). 

1.2 Blood 

Blood is a fluid used to transport nutrients and oxygen to the organism cells and 

metabolic waste products away from these cells. Blood stream is composed of 

suspension of erythrocytes (red blood cells, RBC) 45% by vol., thrombocytes 

(platelets), leukocytes (white blood cells) 0.7% by vol. and a fluidic blood plasma 

54.3% by vol. (Thibodeau et al., 2012). The proportion of blood occupied by red blood 

cells is called hematocrit, and in normal conditions, it is about 45%. 
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Blood plasma is a solution containing 92% of water, 8% of blood plasma 

proteins, and some amount of other materials. Plasma circulates dissolved nutrients, 

glucose, amino acids, and fatty acids, which can be bound to plasma proteins or 

dissolved in blood, and removes waste products such as urea, lactic acid, carbon 

dioxide. 

Depending on the problem blood flow can be modeled as a one-phase or multi-

phase, one-scale or multi-scale, Newtonian or non-Newtonian fluid and flow being 

laminar or turbulent, mostly depending on the vessel size, blood flow patterns and 

other considerations. In the multi-scale analysis, the continuum approach is coupled 

with the discrete particle method. When using the discrete particle method the red 

blood cells are governed by the spring network model that can be integrated within 

continuum model based on the minimum energy concept (Nakamura et al., 2013). 

Blood exhibits non-Newtonian fluid dynamics, however if the shear rate is 

larger than 100 s-1 then constant dynamic viscosity will provide similar wall shear 

stresses and flow patterns as non-Newtonian models (Berger et al., 2000). This large 

shear rate can be approximated with a vessel diameter and hematocrit parameters, and 

usually if there are no stagnation points or backflow, the constant viscosity can 

accurately capture the blood flow behavior in the arteries whose diameter is larger 

than 1 mm (Tu et al., 2015). In the scientific community the effects of the non-

Newtonian blood model versus the Newtonian blood model was studied in (Jung et 

al., 2006, 2008, Bernsdorf et al., 2009, Liu et al., 2011, Razavi et al., 2011, Karimi et 

al., 2014, Apostolidis et al., 2015, Akbar, 2016, Doost et al., 2016) without reaching 

a concluding remark whether these effects are significant in large arteries. Recently, 

(Marrero et al., 2014) have performed a direct numerical simulation (DNS) (the gold 

standard of fluid simulation, resolving all turbulent length scales down to Kolmogorov 

scale) of pulsatile blood flow in abdominal aortic aneurysm (AAA) and compared 

Newtonian and non-Newtonian blood flow models. They have found that in case 

Newtonian law governed blood viscosity, high shear layers led to a greater flow 

unsteadiness relative to the non-Newtonian viscosity model of the blood flow. This 

resulted in non-Newtonian model being less computationally expensive model and 

the wall shear stress distribution prediction was comparable between models. 

1.3 Intracranial pressure 

Normal ICP varies cyclically with cardiac cycle, respiration, there also could be 

rapid changes in ICP with straining, coughing and change of posture (Wykes et al., 

2015). Intracranial space of a healthy human contains about 1400 ml of brain tissue, 

80 ml of cerebrospinal fluid (CSF) and 150 ml of cerebral blood (Rajesh et al., 2017). 

Intracranial space is space inside the rigid human skull, which means that the inside 

volume is fixed. These constituents exert an evenly distributed inside pressure called 

intracranial pressure (ICP). 

CSF is a colorless fluid mainly composed of water. It is generated by the choroid 

plexus at the rate of a 500 milliliters per day, meaning that the entire CSF volume of 

150 ml is replaced more than three times a day (Puntis et al., 2016). CSF is contained 
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between the arachnoid membrane and the pia mater. CSF provides mechanical 

protection, chemical stability and buoyancy for the brain. 

The Monro-Kellie doctrine states that the sum of all the constituents in the 

intracranial space volumes is constant and therefore any increase in the volume of a 

constituent, must be offset by a decrease in the volume of any other constituent as 

otherwise ICP will rise (Mokri, 2001) (Fig. 2). This is being accomplished by cerebral 

auto regulatory mechanism, which may displace some of the CSF into the spinal 

intradural space and the vascular resistance may change that will result in the 

increased drainage of cerebral veins and venous sinuses into systemic venous system 

(Oswal et al., 2017). Failing of auto regulatory mechanism happens when these before 

mentioned methods are fully exhausted or if the change in volume is very rapid as in 

case of spontaneous hematoma, and this will lead to the increase in ICP. Increased 

ICP is very hazardous to life as the tissue of the brain is the least tolerant to oxygen 

deprivation. 

Human brain receives about 20% of the blood flow of cardiac output (Langham, 

2009). This blood flow is called the cerebral blood flow (CBF). Under normal 

physiological conditions, the cerebral autoregulation mechanism maintains about 50 

ml/minute of 100 g brain tissue while the cerebral perfusion pressure changes in a 

range of (50-140 mmHg) by altering the vascular resistance (Fig. 3). In case of TBI, 

this mechanism may reach the exhaustion. When this happens the cerebral perfusion 

pressure (CPP) and CBF begins to closely correlate (Wykes et al., 2015). 
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Fig. 2. The scheme of Monro-Kellie doctrine. When the swelling begins in the intracranial 

compartment, venous blood and cerebrospinal fluid decrease their volume by drainage 

(autoregulation). The exponential increase in intracranial pressure may lead to herniation 



25 

 

 

Fig. 3. The scheme of cerebral autoregulation. Abnormal or disrupted autoregulation results 

in a linear relation of the cerebral blood flow and cerebral perfusion pressure 

1.4 Artery wall structure 

Arteries are blood vessels through which blood flows away from the heart. The 

blood flowing through arteries is oxygenated with an only exception of pulmonary 

artery. Artery wall is a multilayer (Li et al., 2009) porous structure with plasma in the 

interstitial areas. All arteries have relatively thick walls and are able to withstand a 

heart generated high pressures. Because of this relatively high blood pressure, arteries 

tend to be round in cross-section. 

Artery wall structure changes with its diameter, as smaller arteries contain more 

smooth muscle tissue, which gives them more control over the changing inside arterial 

blood pressure (Tricerri et al., 2016). 

Structurally healthy artery wall is composed of three different layers: tunica 

intima, tunica media and tunica adventitia (Fortier et al., 2014) (Fig. 4). The 

proportion and structure of each artery wall varies with the size and the function of 

the particular artery. 
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Fig. 4. Healthy artery wall layers: the innermost layer (tunica intima), middle layer (tunica 

media), and outermost layer (tunica adventitia) 

Tunica intima is the innermost layer, which is in direct contact with the blood 

flowing in the artery. It consists of smooth endothelial cells that lines the tunica 

intima, elastic membrane and a subendothelial layer mainly consisting of connective 

tissues and collagen fibers. The outer boundary of tunica intima is composed of an 

elastic tissue with fenestral pores also called the internal elastic lamina (IEL). Damage 

induced to the endothelial lining leads to collagenous fibers exposure to blood, which 

is one of the primary cause of clot formation. Endothelium cells are physiologically 

critical as they can regulate capillary exchange and the blood flow. Endothelium 

releases local chemicals called endothelins that helps in constricting the smooth 

muscle cells that are embedded in the vessel wall, by, which increases the blood 

pressure. The excessive amount of endothelins can lead to hypertension (high blood 

pressure). Elastic membrane is used to link the endothelium with connective tissue 

and to provide strength while maintaining flexibility and this membrane is permeable 

to mass exchange. 

Tunica media is the middle layer and consists of concentric sheets of smooth 

muscle cells, elastic fibers and some collagenous fibers. The outermost portion of 

tunica media consists of thin band of elastic fibers, also called external elastic lamina 

(EEL). Smooth muscle cells allows artery to contract and relax. In arteries, 

vasoconstriction is the decrease in blood flow by the artery contraction via the smooth 

muscles embedded in the artery wall narrowing the artery lumen and increasing the 

blood pressure. Vasodilation is the opposite effect reached when the smooth muscles 

relax and the lumen widens leading to the drop in the blood pressure. Both processes 

are regulated in part by nerves in the vessel wall called nervi vasorum. Locally 
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hormones and chemicals also control blood vessels. Neural and chemical mechanisms 

together control the blood flow to cope with the change in body conditions, such as 

hydration, exercising, etc. The smooth muscle layers are held by collagenous fibers, 

which bind all the artery wall layers. Elastic fibers add to flexibility while collagenous 

fibers in the outermost layer of intima media increase the strength of the artery. 

Tunica adventitia is the outermost layer of arteries and consists of connective 

tissue mainly of composed collagen fibers, and smaller amount of elastic fibers and 

some capillaries. Elastic fibers help to stabilize the artery within the body. 

All of this before mentioned structure falls into histological one scale semi-

layered artery wall description. However, collagen fibers, one of the most important 

constituent in terms of artery wall mechanical behavior, are composed of smaller 

structures, forming their mechanical behavior. They can be regarded as periodic 

beam-like structures, which are composed of densely-packed fibrils (Bianchi et al., 

2016). Fibrils are composed of staggered arrays of collagen molecules, which are 

interconnected with the head-to-tail arrangement by intermolecular covalent cross-

links (Eyre et al., 2008). The behavior of collagen molecules is dependent on thermal 

effects and on the uncoiling process of collagen triple helices (Marino, 2012). 

1.5 Artery wall mechanical behavior 

Artery wall structure, chemical and physical factors, such as pH, osmotic 

pressure, temperature, partial pressures of carbon dioxide and oxygen, 

monosaccharide and ionic concentrations forms a basis of the artery wall mechanical 

behavior (Holzapfel et al., 2000). This behavior changes (arteries become stiffer or 

otherwise) along the vascular tree as the arterial wall structure changes, however the 

general mechanical behavior is conserved. The abundance of the possible transient, 

and long-term variations in vivo, the anisotropy of artery wall, makes it very hard to 

generalize arterial wall mechanical behavior in vivo. Therefore, the general artery wall 

mechanical behavior is determined in vitro, by inflation (Bader, 1967), uniaxial 

extension (Walsh et al., 2014), shear and other (Macrae et al., 2016) mechanical tests. 

The compressibility of the hyperelastic arterial wall is an important parameter 

as the resulting stresses can differ significantly between the incompressible and 

slightly compressible material (up to 100%) (Yosibash et al., 2011). For a long time 

it was thought that arteries can be regarded as incompressible material, as their volume 

was found to stay constant under physiological conditions (Carew et al., 1968). 

Recently, studies performed by (Yosibash et al., 2014, Nolan et al., 2016, Yossef et 

al., 2017), have shown that arteries are slightly compressible.  

From the stress-free configuration over a relatively high strain range, arteries 

are highly deformable and exhibit a non-linear stress-strain response with a typical 

exponential stiffening effect at higher stresses. Stiffening effect is due to collagen 

fibers, which are wavy when the strain is relatively low, and stretches when the strain 

becomes large. 

Histologically artery wall can be considered as a composition of two 

constituents: the matrix of a relatively less stiff material, which, for example, can be 

a composition of smooth muscle cells, elastin fibers, etc. and a significantly stiffer 
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material embedded into the matrix - the protein collagen (Waller et al., 1992, 

Holzapfel et al., 2000). This histological feature leads to inhomogeneity and 

anisotropy or in an ideal case to the transverse isotropy. 

1.6 Mathematical models of artery wall mechanical behavior 

Artery wall is usually modeled using shell elements, which is a good 

approximation for structures that have a relatively high lumen diameter versus wall 

thickness ratio or 3D finite elements that fully resolve the inner stresses in artery wall 

(Dunn, 2006, Valencia et al., 2013). These elements are formulated based on the 

continuum mechanics. The mathematical models used to describe the artery wall 

behavior can be classified into two groups: phenomenological and mechanistic 

(Roccabianca et al., 2014). Models that define active mechanical behavior take into 

account the properties of elastin, collagen fibers and the degree of smooth muscle 

activation (Chen et al., 2017, Coccarelli et al., 2018). Passive behavior is defined in 

terms of the properties of elastin, collagen fibers, and some authors take into account 

the contribution of smooth muscles in a passive state (Taghizadeh et al., 2015). 

Artery wall is usually threated as hyperelastic material, of which mechanical 

response is governed by strain energy density function (SEF). There are isotropic and 

anisotropic models. Isotropic models threat artery wall as if the whole tissue would 

react similarly to strains in any direction. In contrast, anisotropic artery wall models 

treat artery tissue as if the mechanical response is dependent on direction. 

In artery models, SEF must satisfy polyconvexity condition as otherwise there 

would be no guarantee of the existence of realistic physical solution. In addition, the 

volumetric strain energy and isochoric strain energy functions must satisfy the 

requirement of objectivity under the change of coordinate systems. 

(Tricerri et al., 2016) performed a numerical study on the ability of isotropic and 

anisotropic constitutive artery wall models to reproduce empirical data of the artery 

inflation tests. The isotropic models with their SEF satisfying the polyconvexity 

conditions were considered: the first order exponential model proposed by (Delfino et 

al., 1997), the second order exponential model (Balzani et al., 2006) and St. Venant-

Kirchhoff. Following anisotropic models were also addressed: the second order 

exponential law along the fiber direction with different activation of i-th collagen fiber 

family in the reference and deformed configurations. Authors concluded that fitted 

coefficients of isotropic exponential law and anisotropic constitutive models enable 

to adequately model the experimental data and that in case histological data is 

unavailable isotropic models could adequately replace them. Authors also highlighted 

that spatial distribution of the mechanical stresses are highly affected by the 

constitutive models type: isotropic, anisotropic, and that this can have considerable 

effect when evaluating unhealthy arterial tissues. 

(Auricchio et al., 2013) investigated the influence on the stress distribution 

between isotropic and anisotropic constitutive artery wall models. The isotropic model 

was a five parameter Mooney-Rivlin model, while anisotropic model was fiber-

reinforced model proposed by (Holzapfel et al., 2000, Gasser et al., 2006). Authors 

have concluded that stresses formed using isotropic models can sometimes be higher 
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(up to 600%) when compared with reference anisotropic models, and therefore may 

lead to misinterpretation of the severity of the situation. 

The more fundamental mechanistic models will provide more insight and will 

have higher predictive capabilities versus phenomenological models, while 

phenomenological models will reduce the need for the computing power. Therefore, 

usually, constructed simplified models are modified to account for more details in 

case problem requires and otherwise used as a fast and reliable basis for problems that 

they were originally intended to solve. 

1.7 Geometry reconstruction from the medical imaging data 

Vessel geometry reconstruction from the medical imaging data is a rapidly 

developing field, as new image capture techniques become available (Chiastra et al., 

2017). It is the first step in developing a patient specific case study. The process of 

geometry reconstruction can be divided into several steps: 

 Acquisition of medical images 

 Segmentation of medical images 

The first step of the patient specificity modeling is the obtaining of the medical 

image via one of the following methods: radiography, ultrasonography, computed 

tomography (CT), magnetic resonance imaging (MRI), radiation therapy, optical 

coherence tomography (OCT) or other techniques. Usually data of the image is stored 

in digital imaging and communications in medicine (DICOM) standard ISO format, 

where further it can be used for 3-D visualization or image segmentation. 

The second step is the image segmentation. Image segmentation is a method of 

image partitioning into different segments with the same attributes as intensity, gray 

level, texture, etc. to obtain the desired object from the background (Bali et al., 2015) 

(Fig. 5). Image segmentation can be done manually or autonomously. Manual 

segmentation is prone to bias, expertise requirements and is a tedious time consuming 

task, and for these reasons automatic segmentation techniques are widely developed 

(Khan et al., 2018). Different authors provide different classification of automatic 

segmentation methods, probably due to different emphasis in their studies. Here the 

classification proposed by (Anjna et al., 2017) is used. Automatic image segmentation 

methods are based on the discontinuity detection (boundary, edge detection methods) 

or similarity detection methods (clustering) (Bali et al., 2015). These techniques are 

then further classified as structural, stochastic or hybrid methods. In structural 

methods, the structure of the segment is known a priori. In stochastic methods discrete 

information available in every pixel are used, while in the hybrid method both the 

structural and stochastic information is used (Anjna et al., 2017). Finally, the methods 

of segmentation are as follows: thresholding, edge based, region, clustering, 

watershed, partial differential equations, artificial neural network, etc. 

Thresholding method is a structural method based on similarity detection, where 

the global, variable (local, adaptive), multiple threshold values on the intensity level 

are used to segment the image.  



30 

Edge based method is a structural method based on discontinuity detection, 

where the derivative of intensity is used to obtain the change in intensity levels near 

the edge. There are various edges: step, ramp, roof, line. Step edge results in an abrupt 

change in intensity level, while in ramp edge there is a gradual change in the intensity 

level. Roof edge results in a gradual increase of the intensity up to a maximum value, 

and then gradual decrease of intensity. The line edge is formed where the abrupt 

increase in the intensity is followed by the abrupt decrease in the intensity. 

Region based method is based on the similarity detection. Region based methods 

are divided into two groups: region growing methods, split and merge methods. 

Region growing is performed by selecting (manually or automatically) the seed 

points, which based on the grey level, color, intensity similarity or threshold values 

expands further to segment object of interest. In split and merge technique, the initial 

image is continuously split into reasonable regions. After splitting was performed, the 

merging of the adjacent regions are performed based on defined similarity condition. 

This is done until no merging is possible. 

Clustering based segmentation method is based on the similarity detection. 

Pixels with similar characteristics are grouped into clusters. There are two types of 

clustering methods: hierarchical and partition based methods. Hierarchical methods 

are based on the hierarchical tree, were the root represents the database, while the 

internal nodes represents clusters. Partition based methods use optimization 

techniques that iteratively minimize the objective function. Clusters are determined 

using algorithms that perform hard clustering or soft clustering. In hard clustering 

algorithm the pixel can only belong to one cluster, while in soft clustering the same 

pixel may belong to several clusters. 

Watershed based segmentation method is based on the idea of watershed 

separating the two basins. This separation is done on the image based on its greytone, 

of which the preprocessed smoothed out gradient magnitude with aiding markers 

could be used to segment the image. 

Partial differential equations based segmentation methods are relatively fast 

methods and can be used in cases where time is the significant parameter. 

Artificial neural network based segmentation is based on the image mapping 

into the neural network, where pixel characteristics are defined. These artificial neural 

networks have to be trained with a large amount of input data. 

Some of these methods are used in the computer software such as Vascular 

Modeling Toolkit (VMTK) (Fig. 5), 3D Slicer, MITK, etc. 
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Fig. 5. Arterial network segmentation using “VMTK 1.3” computer software 
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1.8 Reconstruction of the prestress 

 

Fig. 6. The load free configuration of an artery resembles situation when there is no acting 

inside pressure, only prestress. Loaded configuration is similar to in vivo case when artery is 

prestressed and loaded by the internal arterial blood pressure 

In the in vivo state artery wall is loaded and prestressed (Fig. 6), however during 

the geometry reconstruction from the medical imaging data the in vivo stress state 

cannot be reconstructed and without further actions, the obtained geometry would be 

assumed to be in a stress-free state, which is not adequate. 

The pre-loading comes from the inner arterial blood pressure and viscous 

traction, which is defined by 𝝌𝑝 mapping, while prestress, defined by 𝝌𝑟𝑒𝑠 mapping, 

is due to the arterial growth and remodeling mechanisms or may accumulate due to 

cyclic loading (Huyghe et al., 1991). 

The hyperelastic mechanical behavior of an artery wall is governed by the SEF, 

denoted as 𝛹, and some material constants, which are usually obtained for the 

reference configuration. Reference configuration is usually a stress-free or load-free 

configuration that is obtained in vitro. As the artery reconstructed from the medical 

imaging is in the in vivo state, we cannot directly apply the SEF with material 

parameters obtained in vitro to model the mechanical behavior, the stresses of internal 

arterial blood pressure and prestress must be incorporated to match the configuration. 

Methods that perform such task are called the prestress algorithms. Several of these 

prestress algorithms are proposed in the scientific community. 
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The inverse design algorithm for quasi-incompressible material formulation was 

proposed by (Govindjee et al., 1998). The idea of inverse design analysis is to compute 

the un-deformed shape from the given final deformed shape, with available Cauchy 

tractions and displacement boundary conditions. The drawbacks of this method shown 

by (Gee et al., 2010) are the non-uniqueness of the stress-free material configuration 

and the buckling of thin walled structures. (Hsu et al., 2011) have proposed a 

prestressing method in, which the stress is iteratively accumulated in the second Piola-

Kirchoff stress tensor by solving a modified variational formulation representing the 

balance of linear momentum of structural mechanics in the quasi-static analysis with 

the unknown being the displacement field. The drawback of this method is that 

although the stress state that is in equilibrium with the preloaded state is reached, the 

stiffness of the artery remains the same as the SEF is dependent on the deformation 

gradient, which is held close to the identity. Other method proposed by (Weisbecker 

et al., 2014) is used to incrementally update the deformation gradient, which also 

reconstructs the stiffness of an artery at the current stress level and is able to converge 

to the configuration obtained by a classical forward computation. However, this 

method is only applicable if the material law is path-independent. 

1.9 Concluding remarks on the literature review 

A thorough search of the relevant literature yielded only one scientific article 

presenting the numerical assessment of the accuracy of the nICP measurement method 

(Ragauskas et al., 2005). In (Ragauskas et al., 2005) the numerical model was 

presented, which considered the interaction of the pulsatile blood flow and the 

compliant OA in case of the straight, axisymmetric OA. Blood was considered as 

Newtonian fluid (Berger et al., 2000), while the dynamic blood flow and dynamic 

blood pressure boundary conditions were prescribed on the OA’s inlet and outlet 

boundaries. The numerical modeling was performed using the finite difference 

method (Dimov et al., 2018). (Ragauskas et al., 2005) found that the systematic error 

of the nICP measurement method was within the range of [-3, 1] mmHg, while ICP 

changed in the range of [10, 40] mmHg. In addition, (Ragauskas et al., 2005) found 

that the 𝐼𝐶𝑃 =  𝑃𝑒 balance condition holds regardless of the outlet resistance to the 

blood flow. In (Ragauskas et al., 2005) the stress-strain curve of the artery wall was 

considered exponential (Fung et al., 1979). However, current state-of-the-art 

constitutive artery wall models consider that the stress-strain curve of the artery wall 

material at the low end of the internal pressure range is approximately linear, and at 

the high end of the pressure range the exponential stiffening effect takes over (Li et 

al., 2016). Based on (Langham, 2009) OA’s arterial pressure is dependent on the 

patient’s condition and may be in both areas of the stress-strain curve, so it is 

important to incorporate the state-of-the-art constitutive material model that can 

accurately model the arterial mechanical response in a wide range of arterial pressures. 

In addition, the influence of the patient-specificity was not considered in (Ragauskas 

et al., 2005). Patient-specificity introduces curvature of the artery structure, which 

induce local effects (Chiastra et al., 2017) that may influence the systematic errors of 

the nICP measurement method. 
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In order to perform the numerical modeling and to assess the accuracy of the 

nICP measurement method in case of a patient-specific OA, it is necessary to develop 

a new methodology, since the application of a finite difference numerical model 

(Ragauskas et al., 2005) may be very difficult or even impossible. The resulting 

research methodology should allow the development of a sufficiently accurate 

numerical model of the blood flow in the patient-specific, compliant OA. With the 

developed numerical model the dependencies of the pulsatile blood flow in the 

compliant patient-specific ophthalmic artery under the conditions of the non-invasive 

intracranial measurement must be determined by performing numerical modeling and 

evaluating the dependencies of the standard deviation of the blood flow parameters 

and the dependencies of the method’s systematic errors based on the measurement 

distance, intracranial and extracranial pressures. 

1.10 The author’s contribution 

The author of the dissertation analyzed scientific data on causes, effects and 

measurement methods of the intracranial pressure, on human cardiovascular system 

and its numerical modeling, on the internal structure of the artery wall, its mechanical 

behavior and mathematical models describing that behavior, about methods used to 

reconstruct the artery from the medical data, about the in vivo strains and deformations 

of arteries and methods of their restoration, as well as numerical studies of non-

invasive intracranial pressure measurement. The author of the dissertation has 

implemented a stress and deformation restoration algorithm for hyperelastic materials, 

introduced the state-of-the-art artery wall material model and applied its own fiber 

structure definition method in COMSOL Multiphysics® numerical modeling 

computer program. The author of the dissertation created a numerical model of the 

blood flow of the ophthalmic artery under a non-invasive intracranial pressure 

measurement and performed a research on blood flow dependencies and possible 

systematic deviation (error) dependence on measurement conditions and ophthalmic 

artery blood flow features. The author of the dissertation created functional 

dependencies describing the standard deviation of the mean blood flow velocity on 

modeled measurement distance, intracranial pressure, and added external pressure. 

In the next chapter, we will present the ideas, mathematical concepts and 

methods that allowed us to develop and solve the defined problem.  
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2 METHODOLOGY 

2.1 Prerequisites 

The numerical investigation of the pulsating blood flow in the compliant OA 

under the conditions similar to those encountered during the nICP measurement 

requires a model that incorporates the mechanical behavior of the OA wall, the 

dynamics of pulsatile blood flow, and a model coupling the blood flow and the artery 

wall interaction. These before mentioned phenomena can be formulated in terms of 

partial differential equations, which can be efficiently solved with the finite element 

method, which is based on continuum mechanics. 

The arterial tissue and blood is considered as continuous medium, of which 

mechanical behavior is governed by the conservation principles (conservation of 

mass, conservation of momentum, and balance of mechanical energy) and the material 

constitutive models. Motion and dynamics are described by field quantities that are 

either scalars, vectors or tensors. 

In this chapter, the ideas and methods that are required in order to develop the 

numerical model encompassing before mentioned phenomena are introduced. In 

chapter 2.1.1 the brief introduction on the continuum mechanics are presented based 

on (Ogden, 1997, Holzapfel, 2000). In chapter 2.1.1.1 the motion, deformation and 

stain measures of the continuum body are defined. In chapter 2.1.1.2 the distributed 

external forces and the inside body forces called stresses are introduced. In chapter 

2.1.1.3 the fundamental conservation principles of continuum mechanics are 

introduced concerning the conservation of mass, conservation of momentum, and 

balance of mechanical energy. In chapter 2.1.2, fluid-structure interaction method is 

introduced together with arbitrary Lagrangian-Eulerian (ALE) formulation, which 

enables tracking of the fluid-structure interface in large deformation analysis. The 

basic principles of the finite element method are presented in chapter 2.1.3. 

2.1.1 The principles of continuum mechanics 

 

Fig. 7. The physical phenomena are multi-scale 

All of the matter is made out of tiny particles called atoms. All of their 

interactions form the structural and fluidic behavior of an everyday life experiences. 
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The macroscopic system composed of countless number of particles would require an 

immense amount of computing power to solve all the motions and interactions 

happening at the molecular level. Usually, the compromise is made by implementing 

the continuum approach by which space properties are considered as homogeneous 

throughout the elementary volume, which substantially reduces computational effort 

required to solve the desired macroscopic system. The concept of continuum 

mechanics is used in solid mechanics and fluid mechanics, which has a vast number 

of application in engineering problems. In terms of fluid mechanics, Knudsen number 

defines to what extent the approximation of continuity is valid. The method of 

continuum mechanics estimates the complex collective behavior of many particle 

system without establishing the detailed formulation of the inner molecular working, 

but uses an approximation stating that all of this behavior can be characterized by 

some field quantity that is associated with the internal structure, for example, 

temperature, pressure, velocity, etc. These quantities form a macroscopic system (Fig. 

7). 

2.1.1.1 Motion, deformation and strain 

Consider we have a continuum body, denoted as 𝓑, which is composed out of 

particles, which are large enough to be considered as continuous (Fig. 8). Let us 

introduce a right-handed, rectangular coordinate system, which is fixed at the origin 

point 𝑂 with orthonormal basis vectors 𝐞𝑖, where 𝑖 ∈ {1, 2, 3}. The domain Ω that this 

body 𝓑 occupies at time 𝑡𝑖𝑛𝑖𝑡 = 0 is referred as the material configuration. The 

position of arbitrarily chosen particle P ∈ 𝓑 is defined by the position vector 𝐗 with 

respect to the introduced reference frame, while the position of the closest neighboring 

particle Q ∈ 𝓑 in the arbitrary direction is defined by the position vector 𝐗 + d𝐗 with 

respect to the same reference frame, where d𝐗 is the infinitesimally small line element 

between points P and Q. After time 𝑡 > 𝑡𝑖𝑛𝑖𝑡 domain Ω experiences motion 𝐱 =
𝝌(𝐗, 𝑡), where motion 𝝌 is one to one mapping from the configuration at time 𝑡𝑖𝑛𝑖𝑡 
(material) to the configuration at time 𝑡 (spatial), and therefore, a new spatial 

configuration is obtained. The same points (P and Q) are displaced by 𝐮(𝐗) and 𝐮(𝐗 +
d𝐗), respectively, and their position in the spatial configuration is now represented by 

particles p and q, of which the position vectors are defined by 𝐱 and 𝐱 + d𝐱, 

respectively (Fig. 8). The infinitesimally small distance between particles p and q is 

represented by the line element d𝐱. The linear transformation of d𝐗 into d𝐱 is as 

follows: 

 d𝐱 = 𝐅d𝐗 (1) 

were 𝐅 is the deformation gradient tensor and it is defined as follow (Holzapfel, 2000): 

 𝐅 =
∂𝐱

∂𝐗
 (2) 

Due to motion, the continuum body can change its size and shape (deformation), 

position and orientation. If there is no change in size or shape then body is assumed 
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to be rigid, or it is not experiencing any external forces that will result in internal 

forces (stresses). 

 

Fig. 8. The motion 𝐱 = 𝛘(𝐗, 𝑡) of the line element d𝐗 in the material configuration resulting 

in a line element d𝐱 in the spatial configuration 

In three-dimensional analysis deformation gradient is a tensor of nine entries and it 

characterizes the motion around the chosen particle (Ogden, 1997, Holzapfel, 2000). 

It can also be described in terms of displacement, were 𝐮 = 𝐱 − 𝐗, and then the 

deformation gradient is as follows: 

 𝐅 =
∂

∂𝐗
(𝐗 + 𝐮) =

∂𝐗

∂𝐗
+
∂𝐮

∂𝐗
= 𝐈 +

∂𝐮

∂𝐗
 (3) 

were 𝐈 is the identity tensor. 

Determinant of the deformation gradient 𝐽 = det𝐅 defines the change in volume 

as follows (Ogden, 1997, Holzapfel, 2000): 

 𝑑𝑣 = 𝐽𝑑𝑉 (4) 

where the deformations of infinitesimal volume element in material configuration 𝑑𝑉 

is transformed into the infinitesimal volume element in spatial configuration d𝑣. Due 

to the fact that material volume cannot be negative 𝐽 > 0. 𝐽 = 1 corresponds to 

material that preserves its volume. 

The oriented surface element of material configuration can be defined as 𝑑𝐀 =
𝑑𝐴𝐍 and of the spatial configuration as 𝑑𝐚 = 𝑑𝑎𝐧, where 𝐍 and 𝐧 are the normal unit 

vectors in different configurations. These elements are related by Nanson’s formula 

(Holzapfel, 2000), as follows: 
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 𝑑𝐚 = 𝐽𝐅−T𝑑𝐀 (5) 

If the rigid translations are present, the deformation gradient will be equal to 

identity 𝐅 = 𝐈. In case of rotations, the deformation gradient becomes non-equal to 

identity 𝐅 ≠ 𝐈, although no strains or stresses are present. For this reason the polar 

decomposition concept is introduced, with the left polar decomposition usually used, 

which is as follows (Holzapfel, 2000): 

 𝐅 = 𝐑𝐔 (6) 

were R corresponds to the rotation tensor and 𝐔 = 𝐔T corresponds to the right stretch 

tensor. From here we can introduce the strain measure as follows (Ogden, 1997, 

Holzapfel, 2000): 

 𝐅T𝐅 = (𝐑𝐔)T𝐑𝐔 = 𝐔T𝐑T𝐑𝐔 (7) 

Here 𝐑T is the inverse of 𝐑 and then 𝐑T𝐑 = 𝐑−1𝐑 = 𝐈. Therefore, the 𝐅T𝐅 is as 

follows: 

 𝐅T𝐅 = 𝐔T𝐔 = 𝐔2 (8) 

From the Eq. (8), we see that the rotation is not considered and we are only left with 

the tensor representing the squared stretches. 

Now the strain measures in the material configuration can be defined. The right 

Cauchy-Green deformation tensor is as follows (Holzapfel, 2000): 

 𝐂 = 𝐅T𝐅 (9) 

where 𝐂 only accounts for deformations without rotations, which are the true causes 

of stress and strains. 

To measure strains objectively, the invariants are introduced, which are scalar 

valued functions that do not depend on the choice of the coordinate system. The 

invariants of the elastic material are as follows: 

 𝐼1 = tr𝐂, 𝐼2 =
1

2
[(tr𝐂)2 − tr𝐂2], 𝐼3 = det𝐂 (10) 

The first invariant describes the stretch in the principal directions; second invariant 

describes changes in orientation, while the third invariant describes volumetric 

changes. In case of anisotropy, additional invariants must be introduced. 
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2.1.1.2 Mechanical stresses 

 

Fig. 9. Traction vectors defining internal forces on the infinitesimal area and the outward 

normal in the reference 𝐓, 𝐍 and in current 𝐭, 𝐧 configurations, respectively 

Let us consider a body in the material and spatial configurations, Ω and Ω𝑡, 
respectively, which is subjected to the distributed forces: the external forces that acts 

on the outer boundary surface and the internal forces acting on an imaginary surface 

within the body (Fig. 9). The infinitesimal force d𝐟 acting on both infinitesimal 

surfaces 𝑑𝐴 and 𝑑𝑎 for each surface element is as follows (Ogden, 1997, Holzapfel, 

2000): 

 𝑑𝐟 = 𝐭(𝐱, 𝑡, 𝐧)𝑑𝑎 = 𝐓(𝐗, 𝑡, 𝐍)𝑑𝐴 (11) 

where 𝐭 is the traction vector (Cauchy or true) defined in the spatial configuration, 

acting on infinitesimal surface area d𝑎 with outward normal vector 𝐧. 𝐓 is the traction 

vector (first Piola-Kirchhoff or nominal) defined in the reference configuration 

pointing to the same direction as traction vector 𝐭 and acting on infinitesimal surface 

area d𝐴 with with outward normal vector 𝐍. 

From the Cauchy stress theorem, there exist unique fields 𝛔 and 𝐏 so that if 

traction vectors depend on the outward normal, they must be linear with respect to 

outward normal as follows (Holzapfel, 2000): 

 {
𝐭(𝐱, 𝑡, 𝐧) = 𝛔(𝐱, 𝑡)𝐧

𝐓(𝐗, 𝑡, 𝐍) = 𝐏(𝐗, 𝑡)𝐍
 (12) 

where 𝛔 is the Cauchy stress tensor, 𝐏 is the first Piola-Kirchhoff stress tensor. The 

relation between 𝛔 and 𝐏 can be written as follows (Holzapfel, 2000): 

 𝛔(𝐱, 𝑡)𝐧𝑑𝑎 = 𝐏(𝐗, 𝑡)𝐍𝑑𝐴 (13) 
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Now using the Nanson’s formula the first Piola-Kirchhoff stress tensor can be written 

as follows (Holzapfel, 2000): 

 𝐏 = 𝐽𝛔𝐅−T (14) 

In the numerical procedures for solids, usually, a second Piola-Kirchoff stress tensor 

𝐒 is used, which in terms of 𝐏 is as follows (Holzapfel, 2000): 

 𝐒 = 𝐅−𝟏𝐏 (15) 

2.1.1.3 Fundamental conservation principles 

In our work following fundamental conservation, principles of continuum 

mechanics are used: 

 Conservation of mass 

 Conservation of linear momentum 

 Balance of mechanical energy 

The conservation of mass is introduced in chapter 2.1.1.3.1, conservation of 

momentum in chapter 2.1.1.3.2 and the balance of mechanical energy in chapter 

2.1.1.3.3. 

2.1.1.3.1 Conservation of mass 

The continuous body 𝓑 is composed of continuous set of points that possess the 

mass. At time, 𝑡 = 0 body 𝓑 encompasses the domain Ω, with its surface boundary Γ. 

If we assume that domain Ω is a closed system, then during the motion, this closed 

system may deform, however the mass of the closed system remains constant and only 

the energy can be transferred throughout the boundary Γ. In contrast, if we fix the 

domain of interest in the space, then we are left with the control volume Ω𝑉 and the 

control surface Γ𝑉, which during the motion stays fixed and mass and energy can both 

enter and leave the system. 

Considering a closed system the mass should always be a positive number 𝑚 >
0 and the conservation of mass for all times 𝑡 than can be written as follows: 

 𝑚(Ω0) = 𝑚(Ω) > 0 (16) 

Mass in the material configuration is a function of material density 𝜌0(𝐗) and 

material volume 𝑑𝑉, while spatial mass density is a function of spatial mass density 

𝜌(𝐱, 𝑡) and spatial volume 𝑑𝑣. Therefore, we may write (Holzapfel, 2000): 

 𝜌0(𝐗)𝑑𝑉 = 𝜌(𝐱, 𝑡)𝑑𝑣 > 0 (17) 

Eq. (17) means that during the motion if the volume of the infinitesimal volume 

element shrinks or increases, the density increases or decreases, respectively. We may 

also write it in the global form as follows: 
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 𝑚 = ∫ 𝜌0(𝐗)𝑑𝑉

Ω

= ∫ 𝜌(𝐱, 𝑡)𝑑𝑣

Ω𝑡

 (18) 

Eq. (18) means that the mass of the whole domain Ω should be the same as the mass 

of the domain Ω𝑡, which resulted after motion. Based on the Eq. (4) we may write a 

continuity mass equation in the material description in local form, which is used in 

solid mechanics: 

 𝜌0(𝐗) = 𝜌(𝐱, 𝑡)𝐽(𝐗, 𝑡) (19) 

The rate form in the material description than is as follows (Holzapfel, 2000): 

 
𝜕𝜌0(𝐗)

𝜕𝑡
= 0 (20) 

In the spatial description, based on the equation (20) we can write: 

 
𝐷

𝐷𝑡
(𝜌(𝐱, 𝑡)𝐽(𝐗, 𝑡)) = 0 (21) 

From Eq. (21) and also based on the (Holzapfel, 2000) where it is shown that 
𝜕𝐽

𝜕𝑡
=

𝐽div𝐯, we obtain: 

 

𝐷(𝜌(𝐱, 𝑡)𝐽(𝐗, 𝑡))

𝐷𝑡
=
𝜕𝜌(𝐱, 𝑡)

𝜕𝑡
𝐽(𝐗, 𝑡) + 𝜌(𝐱, t)

𝜕𝐽(𝐗, 𝑡)

𝜕𝑡

= 𝐽(𝐗, 𝑡) (
𝜕𝜌(𝐱, 𝑡)

𝜕𝑡
+ 𝜌(𝐱, 𝑡)div𝐯(𝐱, 𝑡)) = 0 

(22) 

from the Eq. (21) and based on the material time derivative of the spatial density 

function, we can obtain the rate form of continuity mass equation in the spatial 

description in the local form, which is used in fluid dynamics: 

 
𝜕(𝜌(𝐱, 𝑡))

𝜕𝑡
+ div (

𝜕𝜌(𝐱, 𝑡)

𝜕𝑡
𝐯(𝐱, 𝑡)) = 0 (23) 

For the incompressible continuum, body there is no change in density with respect to 

time so 
𝜕𝜌(𝐱,𝑡)

𝜕𝑡
= 0 and therefore, the continuity equation in a spatial form for the 

incompressible body is as follows: 

 div𝐯(𝐱, 𝑡) = 0 (24) 

2.1.1.3.2 Conservation of linear momentum 

Only the balance of the linear momentum is considered here, as the constitutive 

equations of the blood and of the artery wall considers the symmetry condition on the 
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Cauchy stress tensor, which implies that the balance of angular momentum is also 

satisfied (Tricerri, 2014). 

The total linear momentum 𝐋 is defined as follows (Holzapfel, 2000): 

 𝐋(𝑡) = ∫ 𝜌(𝐱, 𝑡)𝐯(𝐱, 𝑡)𝑑𝑣 = ∫ 𝜌0(𝐗)𝐕(𝐗, 𝑡)𝑑𝑉
ΩΩ𝑡

 (25) 

where 𝐕 is the velocity in the material configuration. 

The balance of the linear momentum can be written as follows (Holzapfel, 

2000): 

 �̇�(𝑡) =
𝐷

𝐷𝑡
∫ 𝜌(𝐱, 𝑡)𝐯(𝐱, 𝑡)𝑑𝑣 =

𝐷

𝐷𝑡
∫ 𝜌0(𝐗)𝐕(𝐗, 𝑡)𝑑𝑉 = 𝓕(𝑡)
ΩΩ𝑡

 (26) 

Let us assume that a spatial body force, 𝐛𝓕 = 𝐛𝓕(𝐱, 𝑡), which acts on the elementary 

volume 𝑑𝑣 and the surface traction, 𝐭 = 𝐭(𝐱, 𝑡, 𝐧), which acts on the surface Γ affects 

the continuous body 𝓑. In this case, the force 𝓕(𝑡) is as follows: 

 𝓕(𝑡) = ∫ 𝐭𝑑𝑠 + ∫ 𝐛𝓕𝑑𝑣
Ω𝑡Γ

 (27) 

Then the balance of linear momentum based on Eq. (26) and Eq. (27) is as follows: 

 
𝐷

𝐷𝑡
∫ 𝜌𝐯𝑑𝑣
Ω𝑡

= ∫ 𝐭𝑑𝑠 + ∫ 𝐛𝓕𝑑𝑣
Ω𝑡Γ

 (28) 

Integrating Eq. (12) and applying divergence theorem we obtain: 

 ∫ 𝐭(𝐱, 𝑡, 𝐧)𝑑𝑠
Γ

= ∫ 𝛔(𝐱, 𝑡)𝐧𝑑𝑠
Γ

= ∫ div𝛔(𝐱, 𝑡)𝑑𝑣
Ω𝑡

 (29) 

As the integral in Eq. (28) holds for any volume therefore, we can write the local form 

of Cauchy’s first equation of motion in the spatial description, which is extensively 

used in fluid mechanics, from Eq. (28)(29) as follows: 

 𝜌
𝐷

𝐷𝑡
𝐯 − div𝛔 − 𝐛𝓕 = 𝟎 (30) 

were 
𝐷𝑓

𝐷𝑡
=

𝜕𝑓

𝜕𝑡
+ 𝐯 ∙ ∇𝑓 is the material time derivative and 𝑓 is an arbitrary function. 

When inserting the result of the material derivative into Eq. (30) and in case of 

incompressible continuum body following equation is obtained: 

 𝜌 (
𝜕𝐯

𝜕𝑡
+ (𝐯 ∙ ∇)𝐯) − div𝛔 − 𝐛𝓕 = 𝟎 (31) 

For the solid mechanics the Cauchy’s first equation of motion is usually written in the 

material description (Holzapfel, 2000) in terms of the material displacement Eq. (30) 

is as follows: 



43 

 

 𝜌0
𝐷

𝐷𝑡2
𝐔𝑑

2 − Div𝐏 − 𝐁𝓕 = 𝟎 (32) 

where 𝐔𝑑 is the material displacement field, Div is the divergence operator in the 

material description, 𝐁𝓕 is the body forces acting on the material configuration. 

2.1.1.3.3 Balance of mechanical energy 

The rate of internal mechanical work done by the stress field is as follows 

(Holzapfel, 2000): 

 𝒫int(𝑡) = ∫ 𝛔:𝐝𝑑𝑣

Ω

 (33) 

where 𝐝 =
1

2
(grad𝐯 + gradT𝐯) is the rate of deformation (Holzapfel, 2000), and : is 

a double contraction operation, which takes two tensors and outputs a scalar value. 

The kinetic energy of the continuum body is as follows (Ogden, 1997, 

Holzapfel, 2000): 

 𝒦(𝑡) = ∫
1

2
𝜌𝐯2𝑑𝑣

Ω

 (34) 

The rate of external mechanical work is as follows (Holzapfel, 2000): 

 𝒫ext(𝑡) = ∫ 𝐭 ∙ 𝐯𝑑𝑠 + ∫ 𝐛 ∙ 𝐯𝑑𝑣

ΩΓ

 (35) 

The internal energy (thermodynamic state variable), which is the sum of all the 

microscopic internal energy u𝑣 per unit current volume integrated over the domain Ω, 

is as follows (Ogden, 1997, Holzapfel, 2000): 

 𝒰(𝑡) = ∫ u𝑣𝑑𝑣

Ω

 (36) 

in addition, since only the mechanical energy is considered the internal mechanical 

work done by the stress field is equal to the rate of internal energy as follows: 

 𝒫int(𝑡) =
𝐷

𝐷𝑡
𝒰(𝑡) (37) 

The balance of mechanical energy in terms of internal energy is then as follows 

(Ogden, 1997, Holzapfel, 2000): 

 
𝐷

𝐷𝑡
𝒦(𝑡) +

𝐷

𝐷𝑡
𝒰(𝑡) = 𝒫ext(𝑡) (38) 



44 

Explicit form of Eq. (38) in the material description is as follows (Holzapfel, 

2000): 

 
𝐷

𝐷𝑡
∫
1

2
𝜌0𝐕

2𝑑𝑉

Ω0

+
𝐷

𝐷𝑡
∫ 𝐏: 𝐅𝑑𝑉

Ω0

= ∫ 𝐓 ∙ 𝐕𝑑𝑆 +

Γ

∫ 𝐁𝓕 ∙ 𝐕𝑑𝑉

Ω0

 (39) 

alternatively, 
𝐷

𝐷𝑡
∫ 𝐏: 𝐅𝑑𝑉
Ω0

= ∫ 𝐏: �̇�𝑑𝑉
Ω0

. In this case the work conjugate and the real 

physical rate of internal mechanical work per unit reference volume is wint(𝑡) = 𝐏: �̇� 

(Holzapfel, 2000). 

Based on the Clausius-Planck inequality and ignoring the thermal effects the 

internal dissipation is as follows (Ogden, 1997, Holzapfel, 2000): 

 𝒟int = 𝐏: �̇� − �̇� ≥ 0 (40) 

where 𝛹 is the SEF and �̇� = u̇𝑣. 

For a reversible process, Eq. (40) is as follows: 

 𝒟int = 𝐏: �̇� − �̇� = 0 (41) 

As for the ideal hyperelastic material the SEF  depends only on the deformation 

gradient (Holzapfel, 2000) and based on (41) the constitutive relation can be expressed 

as follows: 

 𝐏 =
𝜕𝛹

𝜕𝐅
 (42) 

2.1.2 Arbitrary Lagrangian-Eulerian formulation and the fluid-structure 

interaction (FSI) method 

Naturally, the governing equations of fluid flow are formulated in the spatial 

(Eulerian) description. It could be thought as if the observer is watching the flow from 

a fixed location. The material (Lagrangian) description is usually used when dealing 

with solid materials. This can be though as if the observer is moving together with the 

material point. One description, either the material or the spatial is not optimal for the 

entire FSI problem domain (Souli et al., 2013) as the fluid-solid interface cannot be 

tracked. The use of material description for the fluid domain is limited as it can only 

handle small deformations, while the use of spatial description for the solid domain is 

not optimal in terms of the loss in accuracy. Notably, arbitrary Lagrangian-Eulerian 

(ALE) formulation is reliable and is applied as a framework to solve various FSI 

problems (Annerel et al., 2014, Song et al., 2017). In the ALE formulation in addition 

to spatial and material descriptions, additional arbitrary mesh description is introduced 

allowing to track the fluid-solid interface. The scheme showing the mappings between 

different descriptions together with the interface between solid and fluid and their 

respective notations are shown in Fig. 10. 
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Fig. 10. Different descriptions used in the ALE framework. Figure adapted from Fig. 2 in 

(Misiulis et al., 2018) 

𝛋𝑡 maps from the mesh description, in which the motion of material particles is 

evaluated in terms of the arbitrarily moving computational mesh, to the spatial 

description where the motion of material particles is evaluated in terms of the initial, 

fixed computational mesh. 𝛋𝑚 maps from the mesh description, to the material 

description where the motion of material particles is evaluated in terms of the initial, 

fixed computational mesh. 𝝌 maps from the material description to the spatial 

description. In case of ALE formulation, the material time derivative is as follows: 

 
𝐷𝑓

𝐷𝑡
=
𝜕𝑓

𝜕𝑡
|
𝝌
+ 𝐜 ∙ ∇𝑓 (43) 

were |𝝌 means holding the 𝝌 fixed, the relative convective velocity between 

material and mesh descriptions is 𝐜 = 𝐯 − �̂�, where 𝐯 is the material velocity and �̂� is 

the mesh velocity. 

The governing continuity Eq. (24) and linear momentum equations Eq. (31) in 

case of ALE formulation is rewritten as follows: 

 Continuity (mass conservation) remains unchanged: 

 div𝐯(𝐱, 𝑡) = 0 (44) 

 Momentum (conservation of linear momentum): 

 𝜌 (
𝜕𝐯

𝜕𝑡
+ (𝐜 ∙ ∇)𝐯) − div𝛔 − 𝐛𝓕 = 𝟎 (45) 

The boundary between the artery wall and blood is treated as a fluid-structure 

interface. The interaction between fluid and wall happens at the coupling interface 𝛤𝑖 
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(shown in Fig. 10). Total surface force 𝐟𝑓 = 𝐧𝑓𝛔𝑓 exerted by the incompressible fluid 

on the boundary of the wall must be equal to the negative reaction surface force 𝐟𝑠 =
−𝐧𝑠𝛔𝑠, which is exerted on the fluid. The coupling on the interface boundary 𝛤𝑖 is 

then calculated as follows (de Villiers et al., 2017): 

 𝐧𝑠𝛔𝑠 + 𝐧𝑓𝛔𝑓 = 𝟎 on 𝛤0,𝑖 (46) 

where 𝐧𝑓 is the normal to the fluid boundary, 𝐧𝑠 is the normal to the solid boundary. 

In a material description based on Eq. (14), Eq. (46) can be written as follows: 

 𝐍𝑠𝐏𝑠 + 𝐧𝑓𝐽𝛔𝑓𝐅
−T = 𝟎 on 𝛤0,𝑖 (47) 

Fluid domain is affected by a moving wall through the structural velocities calculated 

as follows: 

 𝐯𝑓 = 𝐯𝑠 =
∂𝐔𝑑
∂𝑡

 on 𝛤0,𝑖 (48) 

where 𝐯𝑠 is the wall velocity. 

2.1.3 Basic principles of finite element method 

Partial differential equations are usually used to describe physical phenomena 

in a mathematical framework, which further can be manipulated to obtain the 

quantitative solution of the problem. The majority of the problems described by partial 

differential equation cannot be solved analytically and therefore requires other solving 

techniques. To cope with this problem the discretization techniques are developed. In 

this sense, the continuous field is discretized into elements in which the partial 

differential equations are approximated with numerical model equations, which are 

solved using numerical methods. 

The finite element method is composed of several procedures of which the idea 

is to arrive at the algebraic system of equations, which can then be solved by numerical 

methods (Kaltenbacher, 2015): 

 The strong formulation of partial differential equations governing the 

phenomena in question with provided boundary conditions are multiplied 

by arbitrary test functions. 

 Resultant is further integrated over the whole simulation domain. 

 Integration by parts is further carried on one of the terms, and by doing so 

the weak formulation is realized. 

 Next step is the discretization, which for finite elements is the Galerkin 

approximation method, and this procedure results in the algebraic system of 

equations. 

Mentioned steps are covered in detail below.  

The strong formulation of a scalar 𝑢(𝐳, 𝑡) diffusion partial differential equation 
𝜕𝑢

𝜕𝑡
= 𝑐∇ ∙ ∇𝑢 + 𝑓 with a constant parameter 𝑐 = 1 and added source term 𝑓(𝐳, 𝑡) with 

initial conditions are as follows: 
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{
 
 

 
 
𝜕𝑢

𝜕𝑡
= ∇ ∙ ∇𝑢 + 𝑓 in 𝛺

𝑢 = 𝑢𝐷 on 𝛤𝐷 
𝜕𝑢

𝜕𝐧
= 𝑢𝑁 on 𝛤𝑁

𝑢(𝐳, 0) = 𝑢0 𝐳 ∈ 𝛺

 (49) 

where 𝛺 domain of simulation without boundaries 𝛤𝐷 ∪ 𝛤𝑁, 𝛤𝑑 denotes the boundary 

with prescribed Dirichlet boundary condition, 𝛤𝑁 denotes the prescribed Neumann 

boundary condition. 

We multiply the strong formulation of partial differential equation by a test 

function: 

 𝑤(
𝜕𝑢

𝜕𝑡
− ∇ ∙ ∇𝑢 − 𝑓) = 0 (50) 

and integrate over domain: 

 ∫ 𝑤 (
𝜕𝑢

𝜕𝑡
− ∇ ∙ ∇𝑢 − 𝑓)d𝛺

𝛺

= 0 (51) 

The integration by parts is performed by applying divergence theorem on the above 

equation and the weak formulation is obtained as follows: 

 ∫ 𝑤
𝜕𝑢

𝜕𝑡
d𝛺 +

𝛺

∫ ∇𝑤 ∙ ∇𝑢d𝛺
𝛺

= ∫ 𝑤𝑓d𝛺
𝛺

+∫ 𝑤
𝜕𝑢

𝜕𝐧
d𝛤

𝛤𝑛

 (52) 

The Neumann boundary condition is now incorporated in the weak expression, and 

this boundary condition can now be called the natural boundary condition. Dirichlet 

boundary condition is called the essential boundary condition, as it must be declared 

in addition to the weak formulation: 

 𝑢 = 𝑢𝐷 on 𝛤𝐷 (53) 

Weak formulation and the strong formulation are equivalent, if the scalar field 𝑢 is 

sufficiently smooth. 

The weak formulation is further discretized and the Galerkin method is applied 

element-wise. The 𝑢 has the domain component, lets declare it as 𝑣, of which values 

are to be found and the given boundary values, lets declare them as 𝑢𝑏. We define 

scalar field and test functions in terms of shape functions by the following ansatz: 

 𝑢𝑏 =∑𝑁𝑖𝑢𝐷𝑖

𝑛𝑒𝐷

𝑖=1

= 𝐍𝑏𝐮𝑏 (54) 
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 𝑣 =∑𝑁𝑖𝑣𝑖 = 𝐍𝑏𝐯𝑏

𝑛𝑒

𝑖=1

 (55) 

 𝑤 =∑𝑁𝑖𝜑𝑖 =

𝑛𝑒

𝑖=1

𝐍𝑎𝛗𝑎 (56) 

where 𝑖 is the number of nodes, 𝑎, 𝑏 is used to separate vectors of dependent variable 

and test function, 𝑛𝑒 is the number of unknowns without Dirichlet boundary condition, 

𝑛𝑒𝐷 is the number of unknowns with Dirichlet boundary condition, 𝑁𝑖 , 𝑁𝑗 are the 

shape functions, 𝑢𝐷𝑖, 𝑣𝑖, 𝜑𝑖 are prescribed functions. 

Now the weak formulation with boundary conditions can be written as follows: 

 

∫ (𝐍𝑎𝛗𝑎
𝜕

𝜕𝑡
𝐍𝑏𝐯𝑏) d𝛺 +

𝛺

∫ ∇(𝐍𝑎𝛗𝑎) ∙ ∇(𝐍𝑏𝐯𝑏)d𝛺
𝛺

+∫ (𝐍𝑎𝛗𝑎
𝜕

𝜕𝑡
𝐍𝑏𝐮𝑏)d𝛺

𝛺

+∫ ∇(𝐍𝑎𝛗𝑎) ∙ ∇(𝐍𝑏𝐮𝑏)d𝛺
𝛺

= ∫ 𝐍𝑎𝛗𝑎𝑓d𝛺
𝛺

+∫ 𝐍𝑎𝛗𝑎
𝜕𝑢

𝜕𝐧
d𝛤

𝛤𝑛

 

(57) 

The constants can now be brought forward and then: 

 

𝛗𝑎 ((∫ 𝐍𝑎𝐍𝑏d𝛺
𝛺

)
𝜕

𝜕𝑡
𝐯𝑏 + (∫ (∇𝐍𝑎 ∙ ∇𝐍𝑏)d𝛺

𝛺

) 𝐯𝑏

+ (∫ 𝐍𝑎𝐍𝑏d𝛺
𝛺

)
𝜕

𝜕𝑡
𝐮𝑏 + (∫ (∇𝐍𝑎 ∙ ∇𝐍𝑏)d𝛺

𝛺

)𝐮𝑏

−∫ 𝐍𝑎𝑓d𝛺
𝛺

−∫ 𝐍𝑎
𝜕𝑢

𝜕𝐧
d𝛤

𝛤

) = 0 

(58) 

Obtained equations are used to find coefficients 𝜑𝑎, and here for each 𝑖 following 

equations must be solved: 

 

(∫ 𝐍𝑎𝐍𝑏d𝛺
𝛺

)
𝜕

𝜕𝑡
𝐯𝑏 + (∫ (∇𝐍𝑎 ∙ ∇𝐍𝑏)d𝛺

𝛺

)𝐯𝑏

+ (∫ 𝐍𝑎𝐍𝑏d𝛺
𝛺

)
𝜕

𝜕𝑡
𝐮𝑏 + (∫ (∇𝐍𝑎 ∙ ∇𝐍𝑏)d𝛺

𝛺

)𝐮𝑏

−∫ 𝐍𝑎𝑓d𝛺
𝛺

−∫ 𝐍𝑎
𝜕𝑢

𝜕𝐧
d𝛤

𝛤

= 0 

(59) 
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Eq. (59) can be written in the matrix form, which can be solved using numerical 

methods: 

 𝐌�̇�𝑛 + 𝐊𝐔𝑛 = 𝐑𝑝 (60) 

where 𝐌 is the mass matrix, �̇�𝑛, 𝐔𝑛 are the nodal unknowns, 𝐊 is the stiffness matrix, 

and 𝐑𝑝 is the externally applied nodal point loads. The mass matrix can then be written 

as follows: 

 𝐌 = 𝑀𝑎𝑏        𝑀𝑎𝑏 = ∫ 𝑁𝑎𝑁𝑏𝛺
d𝛺     1 ≤ 𝑎, 𝑏 ≤ 𝑛𝑒 (61) 

stiffness matrix can be written as follows: 

 𝐊 = 𝑀𝑎𝑏        𝐾𝑎𝑏 = ∫ (∇𝑁𝑎 ∙ ∇𝑁𝑏)d𝛺𝛺
     1 ≤ 𝑎, 𝑏 ≤ 𝑛𝑒 (62) 

and the externally applied nodal point loads can then be written as follows: 

 

𝐑𝑝 = 𝑅𝑎 

𝑅𝑎 = ∫ 𝑁𝑖𝑓d𝛺
𝛺

+∫ 𝑁𝑖
𝜕𝑢

𝜕𝐧
d𝛤

𝛤

−∑(∫ (∇𝑁𝑖 ∙ ∇𝑁𝑗)d𝛺
𝛺

)𝑢𝐷𝑗

𝑛𝑒𝐷

𝑗=1

−∑(∫ 𝑁𝑖𝑁𝑗d𝛺
𝛺

)
𝑢𝐷𝑗

𝜕𝑡

𝑛𝑒𝐷

𝑗=1

 

1 ≤ 𝑎 ≤ 𝑛𝑒      1 ≤ 𝑏 ≤ 𝑛𝑒𝐷 

(63) 

The names of matrices are common to the structural mechanics as the finite 

element method was first developed for such problems, however now it can be used 

for a vast majority of different problems. 

2.2 Numerical model of the blood flow in the patient-specific OA 

In order to perform a clinically relevant FSI analysis of the patient-specific OA 

several procedures have to be considered: 

 the constitutive material model for the artery wall and for the blood, 

 the reconstruction of the patient-specific artery from the medical imaging 

data, 

 the incorporation of the prestress, 

 the definition of governing equations and boundary conditions. 

2.2.1 Geometry reconstruction 

Reconstruction of a patient-specific volume of an artery from MRI scan data is 

a non-trivial problem. Usually, a large number of elements represent the reconstructed 
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geometry, and depending on the structure, many elements may be of a bad quality, 

and eventually the direct use in numerical simulation can produce unreliable results, 

so further steps need to be taken in order to overcome this problem. One approach is 

based on smoothening out the obtained geometry while keeping the resulting volume 

very close to the initial volume (Taubin, 1995). We used another approach, which is 

based on the reconstruction of the artery by using a centerline as a parameterized curve 

with a varying artery wall thickness described by a maximum inscribed sphere radius, 

which is defined in detail in (Antiga, 2002). Our procedure of artery geometry 

reconstruction is as follows: 

The reconstruction of artery volume from the MRI scan data is performed using 

the “VMTK 1.3” software (Antiga et al., 2008), which uses the level set method to 

generate image (Gibou et al., 2018). Fast marching initialization is used for the level 

set method, where a number of seed points and source points needs to be selected for 

the artery geometry extraction (Forcadel et al., 2008). The marching cubes algorithm 

(Newman et al., 2006) is used on the obtained image to generate the artery surface. 

Centerline of an artery is computed using “VMTK 1.3” software (Antiga, 2002). 

A relatively large database of points representing the centerline is usually obtained in 

comparison with the artery length. Smoothing is performed in order to prevent wrinkle 

formation by increasing the maximum allowed distance between the generated curve 

and the sequence of points to be equal to 0.01 m. The curve is generated by the internal 

COMSOL Multiphysics® interpolation curve procedure. 

Finally, a smooth geometry shape of the lumen area and vessel wall is generated 

from the smoothed out centerline with COMSOL CAD by using the internal sweep 

procedure (Anon. 2015). Sweep procedure is used to traverse the initial artery 

configuration represented in a 2D plane, by incorporating the obtained internal lumen 

radius parametrization, throughout a smoothed centerline. 

The scaling factor of the sweep procedure is defined as a function of the 

maximum inscribed sphere radius, which allows generation of a patient-specific 

lumen radius along the artery centerline. 

2.2.2 Prestress method 

The reconstruction of the artery from the medical imaging data obtained in vivo 

provides the material configuration geometry, which is stress-free as during the 

geometry reconstruction the stresses are not reconstructed, however, in vivo material 

configuration is subjected to loads (Humphrey et al., 2002) and residual stresses 

(Chuong et al., 1986). The methods used to incorporate the residual stresses and 

physiological loadings are called the prestressing methods. Considering arteries, the 

large strain analysis are carried out, and the stresses are usually not additive (Maas et 

al., 2016), and therefore numerical methods are required to account for the prestress. 

There are several numerical methods proposed to evaluate the prestress. (Hsu et al., 

2011) proposed a method, which allows starting the FSI problems from equilibrium 

stress conditions, however, the prestrain is not accumulated and therefore the 

constitutive material model should start from the loaded configuration. (Gee et al., 

2009) proposed a prestress method, which was further generalized by (Weisbecker et 
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al., 2014) and called the generalized prestress algorithm (GPA). In the GPA, the 

incremental update of displacement field is replaced with the incremental change in 

deformation gradient. The increment of the deformation gradient is as follows: 

 
∆𝐅 = 𝐈 +

𝜕∆𝐮

𝜕𝐱t
 

(64) 

were 𝐱t corresponds to the configuration affected by the history prestrain gradient 𝐅t, 
and ∆𝐮 corresponds to the displacement from the 𝐱t configuration. Current 

deformation gradient, 𝐅t+1, is multiplicatively decomposed into history prestrain 

gradient 𝐅t and increment in deformation gradient ∆𝐅 as follows: 

 𝐅t+1 = ∆𝐅𝐅t (65) 

The algorithm of the GPA is given in (Weisbecker et al., 2014). As ∆𝐮 → 𝟎 the 𝐱t 
configuration approaches material stress-free configuration 𝐗 obtained from the 

medical imaging and the prestrain kept in the history 𝐅𝐭 can now be declared to be the 

prestrain gradient as follows 𝐅p = 𝐅𝐭 and further forward analysis can be carried out 

with the deformation gradient defined as follows: 

 𝐅 = 𝐅arb𝐅p (66) 

were 𝐅arb is an arbitrary deformation gradient obtained during the forward analysis. 

GPA method allows using the material models that can start from the stress-free 

configuration, as prestrain, which defines the prestress via hyperelastic constitutive 

artery wall model, is stored in the history variable. 

2.2.3 Artery wall dynamics: 

2.2.3.1 Governing equations 

It was assumed that no volumetric forces are present and the equation of motion 

for the artery wall during dynamic analysis in the material description with omitted 

volumetric forces based on the Eq. (32) is as follows: 

 𝜌0
𝐷

𝐷𝑡2
𝐔𝑑

2 − Div𝐏 = 𝟎 (67) 

The artery wall is assumed to act as a hyperelastic material for which 𝐏 based on Eq. 

(42) is as follows: 

 𝐏 =
𝜕𝛹

𝜕𝐅
 (68) 

where 𝛹 is the strain energy density function defined by the constitutive artery wall 

model. 
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2.2.3.2 Boundary conditions 

The boundary conditions for the artery wall in the general form are as follows: 

 𝐮 = 𝐮D, 𝐏𝐍 = 𝐆 (69) 

where 𝐮D is the displacement prescribed at Dirichlet boundary, 𝐍 is the unit normal 

vector in the material configuration pointing outward from the artery wall, 𝐆 is the 

first Piola-Kirchoff stress tensor prescribed at the Neumann boundary. 

2.2.3.3 Constitutive model 

The non-trivial vascular wall structure requires a constitutive model that can 

reproduce mechanical behavior under various internal and external pressures during 

FSI simulations (Bianchi et al., 2017, Elkenani et al., 2017, Stupak et al., 2017). When 

considering FSI problems, oversimplified constitutive models will impede the results 

of structural and fluid flow domains. Some recently proposed problems require a very 

careful consideration of the constitutive artery wall model, as small disturbances in 

the blood flow velocity field caused by small displacements of the artery wall needs 

to be reliably determined (Misiulis et al., 2017). Therefore, we adopt a constitutive 

model proposed by (Holzapfel et al., 2000) and extended by (Holzapfel et al., 2005, 

Gasser et al., 2006), which to a great extent can reproduce a static arterial wall 

mechanical behavior. The SEF is given in a decoupled form consisting of two parts: 

a strictly convex function 𝛹vol(𝐽), which is responsible for the volumetric 

(hydrostatic) elastic response, and the convex function in reduced form �̅�(𝐼1̅, 𝐼4̅, 𝐼6̅), 
which is responsible for the volume preserving isochoric (deviatoric) elastic response, 

and the SEF then is given as follows: 

 𝛹 = 𝛹vol(𝐽) + �̅�(𝐼1̅, 𝐼4̅, 𝐼6̅) (70) 

Artery wall is considered as incompressible material (Carew et al., 1968), and so the 

product of principal stretches: 𝜆𝑟, 𝜆𝜃 and 𝜆𝑧 in radial, circumferential and longitudinal 

directions, respectively is 𝜆𝑟𝜆𝜃𝜆𝑧 = 1. In order to enforce incompressibility constrain 

we introduce the 𝛹vol to be as follows (Kiousis et al., 2009): 

 𝛹vol(𝐽) =
𝜅

2
(𝐽 − 1)2 (71) 

where 𝜅 is the bulk modulus, and when 𝜅 → ∞, then 𝐽 → 1 and the exact 

incompressibilty is attained. However, finite element method (FEM) requires that 

incompressible materials should be set to nearly incompressible in order to avoid 

locking problem (Babuska et al., 1992) as the volumetric stresses usually have no 

impact on incompressible materials, and the shape functions are unable to evaluate 

the volumetric stress based on a strain or deformation gradient (COMSOL 

Multiphysics, 2015). The volumetric stress 𝛔𝑚 is calculated as follows: 

 
𝛔𝑚 = −

𝜕𝛹vol(𝐽)

𝜕𝐽
𝐈 (72) 
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Given, that Eq. (71) is used for the 𝛹vol(𝐽), the volumetric stress 𝛔𝑚 then becomes 

linearly related to the volume change as follows: 

 𝛔𝑚 = −𝜅(𝐽 − 1)𝐈 (73) 

The reduced form of the isochoric response, that describes the features of arterial 

wall mechanical behavior, is governed by isotropic and anisotropic parts. The matrix 

component is considered isotropic and is governed by neo-Hookean constitutive 

model. The anisotropic part is governed by constitutive equation introduced in 

(Holzapfel et al., 2005). The isochoric part of SEF �̅�(𝐼1̅, 𝐼4̅, 𝐼6̅), in Eq. (70) then is 

given as follows: 

 �̅�(𝐼1̅, 𝐼4̅, 𝐼6̅) = �̅�iso(𝐼1̅) + �̅�aniso(𝐼1̅, 𝐼4̅, 𝐼6̅) (74) 

where isotropic part is as follows:  

 �̅�iso(𝐼1̅) =
𝜇

2
(𝐼1̅ − 3) (75) 

where 𝜇 > 0 is a stress-like material parameter. The anisotropic part is as follows: 

 

�̅�aniso(𝐼1̅, 𝐼4̅, 𝐼6̅) = ∑
𝑘1
2𝑘2

(exp (𝑘2((1 − ƍ)(𝐼1̅ − 3)
2

𝑖=4,6

+ ƍ(𝐼�̅� − 1)
2)) − 1) 

(76) 

where 𝑘1 > 0 is a stress-like material parameter, ƍ ∈ [0, 1] and 𝑘2 > 0 are 

dimensionless parameters. ƍ can be interpreted as a dispersion about the mean fiber 

direction. Fibers only contribute in tension and therefore only when 𝐼�̅� > 1. 

Invariants 𝐼1̅, 𝐼4̅, 𝐼6̅ are as follows (Holzapfel et al., 2000): 

 𝐼1̅ = tr�̅�,            𝐼4̅ = 𝐌𝑓1
∙ �̅�𝐌𝑓1

,         𝐼6̅ = 𝐌𝑓2
∙ �̅�𝐌𝑓2

 (77) 

where �̅� = �̅�T�̅� is the isochoric right Cauchy-Green deformation tensor, �̅� =

(𝐽−1/3𝐈)𝐅 is the isochoric part of deformation gradient, 𝐌𝑓𝑖
 (𝑖 = [1,2]) are tensors 

characterizing two families of collagen fibers by the tensor product of two mean fiber 

direction vectors in the material configuration (Holzapfel et al., 2000): 

 𝐌𝑓𝑖
= 𝐦0𝑖⊗𝐦0𝑖 (78) 

where based on (Holzapfel et al., 2005) it is assumed that collagen fibers have no 

radial component and, therefore,  𝐦0𝑖 in the local cylindrical coordinate system is 

defined as follows: 

 

𝐦01 = [

0
cos(𝛽)
sin(𝛽)

] (79) 
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𝐦02 = [

0
cos(𝛽)
−sin(𝛽)

] 

where 𝛽 is the angle between the local longitudinal and the local circumferential 

directions.  

In order to define 𝐦0𝑖, that represent the mean fiber directions in the material 

configuration, the local cylindrical coordinate (global curvilinear coordinate) system 

must be introduced, which is dependent on the geometrical shape of the structure and 

is defined by vectors {𝐫Ω, 𝛉Ω, 𝐳Ω} (Fig. 11). Ideally, planes P1 and P2 should be 

perpendicular as vectors {𝐫Ω, 𝛉Ω, 𝐳Ω}. 

 

 

Fig. 11. The fiber structure with the unit vectors of curvilinear coordinate system on planes 

P1 and P2. Figure adapted from Fig. 1 in (Misiulis et al., 2019) 

2.2.3.4 Methods of the mean fiber direction definition 

There are several methods available for the mean fiber direction definition 

(Karajan et al., 2005, Kiousis et al., 2009, Alastrué et al., 2010, Bayer et al., 2012, 

Roy et al., 2014). In order to define the fiber structure in the artery wall, we developed 

a new method (Method I), which is based on the Laplace-Dirichlet method (Bayer, 

Jason et al., 2005). For the comparison of the resulting fiber structure, we selected the 

fiber definition method presented in (Alastrué et al., 2010) (Method II), which is 

currently the state-of-the-art fiber definition method. 

Method I: 

In order to define the mean fiber directions in the volume of the artery wall, we 

propose to solve the simplified partial differential equation (PDE) governing the 

physical process (such as fluid flow, scalar diffusion, etc.) with the corresponding 

boundary conditions. The gradient of the obtained scalar field provides the local basis 

upon which the mean fiber directions can be defined by Eq. (79). 
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In our case, the solution of the stationary modified scalar diffusion equation with 

the prescribed Dirichlet and Neumann boundary conditions provides the optimal 

results when compared with other PDE’s (fluid flow, etc.) and, in addition, it can be 

trivially implemented into the FEM software, therefore, we elaborate here more on 

the implementation of this method in the FEM. 

 

Fig. 12. Idealized cylindrical shape (only a half shown) with defined surface boundaries. 

Figure adapted from Fig. 2 in (Misiulis et al., 2019) 

First, let us use the idealized cylindrical shape of an artery, as shown in Fig. 12, 

and define the surface of the inner wall, as Γi, the outer wall as Γo, one end wall as Γu, 

and the other end wall as Γv. 

The curvilinear coordinates are obtained by solving the stationary modified 

scalar diffusion Eq. (80) with the corresponding boundary conditions, which is also 

known as the Laplace-Dirichlet method: 

 ∇ · (∇𝑈) = 0 (80) 

 𝑈 = 𝑈0, −𝐧 · ∇𝑈 = 0 (81) 

were 𝑈 is an arbitrary scalar field, 𝑈0 is the value prescribed on the Dirichlet 

boundary, 𝐧 is the unit vector of the surface normal. In FEM, weak formulation of the 

problem is needed, which is obtained by multiplying both sides of Eq. (82) by an 

arbitrary weighting (also called test) function 𝑣, and integrating over the domain Ω. 

By applying the divergence theorem, the weighted residual weak form then becomes 

as follows: 

 
∫ ∇𝑈 ∙ ∇𝑣𝑑Ω −∫ ∇𝑈 ∙ 𝐧𝑣𝑑Γ

Γ

= 0
Ω

 
(82) 

were Γ denotes the arbitrary boundary. 

The longitudinal vector field ∇𝑈z is obtained by solving Eq. (80) with the 

Neumann boundary condition prescribed on the inner Γi and outer Γo artery wall 

surfaces, together with the Dirichlet boundary condition prescribed on both artery end 

surfaces, provided that 𝑈Γu ≠ 𝑈Γv. The radial vector field ∇𝑈r is obtained similarly, 

only the Neumann and Dirichlet boundary conditions must be interchanged. 

Additionally, the normalization of the obtained vector fields is performed as follows: 
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 𝐫Ω =
−∇𝑈r

|−∇𝑈r|
, 𝐳Ω =

−∇𝑈z

|−∇𝑈z|
 (83) 

Finally, the circumferential vector field 𝛉Ω is defined as a cross product of the 

unitary radial and longitudinal vector fields, 𝐫Ω and 𝐳Ω, consequently: 

 𝛉Ω = 𝐫Ω × 𝐳Ω (84) 

Let us note that if the shape of the artery is a curved cylinder with varying wall 

thickness, the obtained radial vector field 𝐫Ω may not be perpendicular to the obtained 

longitudinal vector field 𝐳Ω, which may produce errors in the mean fiber directions. 

Also let us note that similar idea based on the solution of the Laplace equation for 

potential energy was implemented to define fiber directions in the heart muscle (Bayer 

et al., 2012). 

Method II (Alastrué et al., 2010): 

The static linear elastic analysis with allowed radial inflation and a prescribed 

small pressure on the internal surface of the artery wall is performed to obtain the 

principal stress directions. The obtained principal stress directions allow the definition 

of the local cylindrical coordinate system and sequentially the definition of the fiber 

structure. When performing the static linear elastic analysis, the rigid body motion is 

prevented by introducing a spring foundation boundary condition on the internal part 

of an artery and setting the spring constant to a value, which does not influence the 

stress levels. Let us note that method II provides fiber directions, which are collinear, 

however the direction can be opposite at random (Fig. 13 a) and, after enforced data 

interpolation by the FEM software, leads to the wrong results of the structural 

analysis, and therefore, additional procedure is required to correctly align fiber 

directions. Our method I has served for this purpose. We assumed that both fiber 

definition methods provide similar mean fiber directions. When checking whether the 

angle between the Cartesian components is greater than 90 degrees, and in this case, 

changing the direction with respect to the direction obtained by method I, we obtained 

the expected transversely isotropic configuration shown in Fig. 13 b). We must note 

that the proposed method to align fiber directions is not general and may result in local 

deviations for certain geometric configurations. 
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Fig. 13. Fiber directions shown on the mesh nodes of the internal surface of the straight 

portion of ICA obtained with method presented in (Alastrué et al., 2010) and interpolated in 

the COMSOL Multiphysics® software. a) initial result, b) aligned after additional procedure. 

Figure adapted from Fig. 3 in (Misiulis et al., 2019) 

2.2.3.5 Governing equations for the blood flow 

Blood flow is governed by the Navier-Stokes equations, which is a composition 

of the continuity and linear momentum conservation equations. The ALE formulation 

is used for the blood domain and therefore the Navier-Stokes equations in ALE 

formulation for the blood flow based on Eq. (44) and Eq. (45) with omitted volumetric 

forces are as follows: 

 Continuity (mass conservation) for the incompressible blood: 

 div𝐯𝑓 = 0 (85) 

 Momentum (conservation of linear momentum): 

 𝜌𝑓 (
𝜕𝐯𝑓

𝜕𝑡
+ (𝐜 ∙ ∇)𝐯𝑓) − div𝛔𝑓 = 𝟎 (86) 

2.2.3.6 Boundary conditions 

The boundary conditions for the blood flow in the general form are as follows: 

 𝐯𝑓 = 𝐯𝑓
D, 𝛔𝐧 = 𝐠𝑓 (87) 

a) b) 
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where 𝐯𝑓
D is the velocity prescribed at Dirichlet boundary, 𝐧 is the unit normal vector 

in the spatial configuration pointing outward from the blood domain, 𝐠𝑓 is the Cauchy 

stress tensor prescribed at the Neumann boundary. 

2.2.3.7 Constitutive model 

The blood is treated as the incompressible Newtonian fluid for which the 

constitutive equation is as follows: 

 𝛔𝑓 = −𝑝𝑓𝐈 + 𝜇𝑓(∇𝐯𝑓 + ∇𝐯𝑓
T) (88) 

were 𝑝𝑓 is the arterial blood pressure, 𝜇𝑓 is the effective blood dynamic viscosity, 

which for Newtonian fluid is constant. 

2.3 The modeling of the measurement 

We define the measurement distance as the distance between two locations one 

of which is located in the part of the ophthalmic artery that is affected by the 

intracranial pressure, and the other is located in the part of the ophthalmic artery that 

is affected by the extracranial pressure. The properties of the measurement model: 

• During the simulated measurement, information is obtained from the plane 

(without volume), one point of which coincides with the point on the center line of 

the artery, and the normal is directed according to the gradient of the center line. 

• The step of measurement data collection depends on the time step of the data 

collected during the calculation. 
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3 RESULTS 

We proposed and implemented a fiber structure definition method (Method I) 

presented in (2.2.3.4), which is based on the solution of the simplified equations 

describing the physical processes (such as hydrodynamics flow, scalar diffusion, etc.) 

in the volume of the artery wall. Obtained mean preferred fiber directions in the artery 

wall allowed us to implement the state of the art extended HGO constitutive artery 

wall model (chapter 2.2.3.3) and simulate the passive arterial wall behavior. In 

addition, the prestress method (GPA) was implemented (chapter 2.2.2), which 

allowed us to start the simulation with considered in vivo stresses. All the before 

mentioned implementations were incorporated into the COMSOL Multiphysics® 

software. 

Results of model verification and validation are presented in chapter 3.1. In 

chapters 3.1.1 and 3.1.2 the simplified geometry is used for the model verification, 

while in chapter 3.1.3 the patient-specific geometry is used for the model validation. 

Results of the simulation of the pulsatile blood flow in the compliant OA and 

discussion about the clinical relevance of the 𝐼𝐶𝑃 measurement accuracy are 

presented in chapter 3.2. 

3.1 Model verification and validation 

3.1.1 Prestress method on a simple geometry 

To verify the correctness of the GPA implementation, a test case scenario based 

on (Weisbecker et al., 2014) was performed. The hyperelastic incompressible cube 

(with dimensions 𝒶 × 𝒶 × 𝒶, were 𝒶 = 1 mm) was made of one mixed finite element 

discretized with the linear Lagrange shape function. The cube was loaded with the 

force 𝓕 =  4 N, which was applied on the top surface Γt, as shown in Fig. 14 a). The 

bottom surface Γb was prescribed to be immovable in the normal direction and to 

prevent any rigid motion the spring foundation boundary conditions were prescribed 

on the sides with the spring constant 𝑘 = 1 N/m3. The obtained spatial configuration 

was of the following dimensions: 𝒷 × 𝒷 × 𝒸, with 𝒷 = 0.496 mm and 𝒸 =
4.061 mm. The obtained spatial configuration was used as a new material 

configuration, shown in Fig. 14 b). All boundary conditions were prescribed as in the 

previous case and the GPA was performed by increasing the force 𝓕(𝑛) =  𝓕/𝑛, were 

𝑛 = 10 is the number of time steps. At the last time step the force 𝓕(𝑛) was kept 

constant, while additional GPA iterations were performed, each reducing the overall 

displacement and error in a damped oscillating manner and converging towards the 

analytical solution, as well as to the solution provided in (Weisbecker et al., 2014). 

The Cauchy stress in the direction of loading was 𝜎zz = 16.24 MPa, and the 

corresponding prestrain was 𝐹zz = 4.061, while in the perpendicular non-loaded 

directions the prestrain was 𝐹xx = 𝐹yy = 0.496. 
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Fig. 14. The prestress scenario: a) unloaded unit cube and b) spatial configuration obtained 

after applied 4 N load on the top boundary, denoted as Γt. In the next step, the same spatial 

configuration shown in b) was initialized as material configuration without prestrain and the 

GPA was performed, which resulted in a correct reconstruction of the prestrain gradient. 

Figure adapted from Fig. 4 in (Misiulis et al., 2019) 

3.1.2 Verification of the extended HGO material model implementation 

To verify the correct implementation of the extended HGO material model in 

our numerical model we chose to reproduce the experimental results of mechanical 

testing of small ICA portions presented in (Sommer et al., 2012). The dimensions of 

our modeled ICA portion was based on the mean values given by the same authors in 

(Sommer et al., 2010). The outer radius in the unloaded configuration was 𝑅𝑜 =
2.67 mm, wall thickness was ℎwall = 0.86 mm, and the length was 𝐿 = 26 mm. The 

artery wall was meshed with 2400 hexahedral mixed finite elements discretized with 

the quadratic Lagrange shape function and with 3 × 20 × 40 elements in radial, 

circumferential and longitudinal directions, respectively (shown in Fig. 15 b). For the 

extended HGO material model the mean fiber directions were defined in the material 

configuration by methods presented in the Section 2.2.3.4. 

We validated the correct implementation of fiber definition methods by 

comparing the obtained fiber structures with the analytical solution Eq. (79). It was 

found that the maximum difference of fiber directions between any of the fiber 

definition methods (method I and method II) and the analytical method in the whole 
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volume of a straight portion of ICA wall did not exceed ∆𝛽 < 0.6 degrees and the 

relative (percentage) error did not exceed ∆𝛽𝑝 < 2.75 %. The percentage error was 

calculated as follows: ∆𝛽𝑝 = |𝛽𝑖 − 𝛽𝑎| 𝛽𝑎⁄ ∙ 100 %, where 𝛽𝑖 corresponds to the fiber 

direction obtained with the 𝑖-th method, where 𝑖 = 1, 2, 𝛽𝑎 corresponds to the fiber 

direction obtained with the analytical method. 

In the extended HGO constitutive material model Eq. (70), the material 

parameters were defined based on (Sommer et al., 2012) of the intact ICA wall of a 

donor VII (Table 1). It was assumed that two fiber families were mechanically 

equivalent and therefore 𝐼4̅ = 𝐼6̅. The artery ends were prescribed to be immovable, 

and the pressure load was applied on the internal boundary Γi, shown in Fig. 15 a). 

The classical forward analysis was performed with the pressure load ranging from 0 

mmHg to the 210 mmHg in increments of 10 mmHg. Additionally, another analysis 

was performed that incorporated the GPA followed by the forward analysis. The GPA 

was used to pre-load the straight portion of ICA up to the diastolic 80 mmHg pressure, 

and after the prestrain was obtained, the forward analysis was commenced to load the 

artery for up to the 210 mmHg of internal pressure. The resulting stresses of classical 

forward and GPA together with the forward analysis are shown in Fig. 15 c) and Fig. 

15 d), respectively. 

Table 1. ICA material parameters for the test case scenario reproduced from (Sommer et al., 

2012) of the intact ICA wall of donor VII. 

𝜇 (kPa) 𝑘1 (kPa) 𝑘2 𝛽 (°) ƍ 

12.4 93.4 96.9 21.8 0.7 

 

The obtained outer circumferential stretch of a straight portion of ICA was 

compared with the numerical fit of the experimental data (Sommer et al., 2012). The 

circumferential stretch was calculated as 𝜆𝜃 = 𝑟𝑜/𝑅𝑜, were 𝑟𝑜 is the outer radius 

obtained after the applied load and 𝑅𝑜 is the initial outer radius. In addition, we 

obtained the inner circumferential stretch, defined as 𝜆𝜃 = 𝑟𝑖/𝑅𝑖, and the midpoint 

circumferential stretch, defined as 𝜆𝜃 = 𝑟𝑚/𝑅𝑚 (𝑅𝑜, 𝑅𝑖, 𝑅𝑚 are shown in Fig. 15 a). 

The small deviations in fiber directions obtained with method I and method II 

produced negligible effect on the outer circumferential stretch of the artery and 

therefore only one case is shown in Figure 6. From the Fig. 16 it can be seen that the 

numerically obtained outer circumferential stretch is comparable with the numerically 

fitted experimental results reproduced from (Sommer et al., 2012). The percentage 

error of the circumferential stretch between the solutions did not exceed 0.35 % over 

the applied internal pressure range. Additionally, from Fig. 17 it can be seen that when 

GPA is applied, the forward analysis resumes with stiffened ICA, which shows that 

the prestrain was incorporated, as ICA became stiffer. 
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Fig. 15. In a) half of the artery is shown with defined boundaries and radiuses: 𝑅0 – outer, 

𝑅𝑚 – middle, 𝑅𝑖 – inner. In b) the mesh is shown. In c) the radial component 𝜎𝑟𝑟 of the 

Cauchy stress is shown in case without the pre-load and in d) 𝜎𝑟𝑟 is shown with the pre-load, 

both at 210 mmHg. Figure adapted from Fig. 5 in (Misiulis et al., 2019) 
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Fig. 16. Inner, midpoint and outer circumferential stretches obtained in numerical 

simulations with fiber directions defined with methods presented in chapter 2.2.3.4 and due 

to similar results represented in one figure. Circumferential stretch of the outer portion of the 

artery wall reproduced from (Sommer et al., 2012) is comparable with that obtained by us. 

Figure adapted from Fig. 6 in (Misiulis et al., 2019) 

 

Fig. 17. The relative difference between our and (Sommer et al., 2012) results of the outer 

circumferential stretch of ICA in the internal pressure range from 0 kPa to 28 kPa 
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Fig. 18. Inner, midpoint and outer circumferential stretches obtained after pre-loading the 

straight portion of ICA up to the diastolic pressure of 80 mmHg and commencing the 

forward analysis for up to 210 mmHg. Figure reproduced from Fig. 7 in (Misiulis et al., 

2019) 

3.1.3 Verification of methods on the patient-specific artery 

3.1.3.1 Geometry reconstruction 

Reconstruction of the patient-specific ICA was made according to the methods 

provided in chapter 2.2.1. The reconstruction of ICA volume was performed from the 

MRI scan data (Magnetic field strength 1.5T, voxel size (0.37x0.37x0.5) mm3), shown 

in Fig. 22 a). Obtained centerline of an artery is shown in Fig. 19. 

The function of maximum inscribed sphere radius is obtained by performing a 

Fourier fit with the first 8 series terms (shown in Fig. 21): 

 

𝑅(𝜉) = 𝔞0 +∑𝔞𝑖 cos(𝑖𝜉𝑤𝑓)

8

𝑖=1

+ 𝔟𝑖sin (𝑖𝜉𝑤𝑓) (89) 
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Fig. 19. Centerline A is composed of all the values obtained during the centerline 

computation in “VMTK 1.3”, while centerline B represents a smoothed out centerline. The 

part where the biggest differences occur is zoomed and showed in b), while in a) the both 

full-length centerlines are showed. Figure adapted from Fig. 8 in (Misiulis et al., 2019) 

The end parts of the ICA radius parametrization 𝑅(𝜉) was set to a constant value:  

 
𝑅(𝜉) = {

𝑅𝑜𝑢𝑡 , 𝜉 < 0.22
𝑅𝑖𝑛, 𝜉 > 0.88

 (90) 

were 𝑅𝑜𝑢𝑡 = 2.09 mm and 𝑅𝑖𝑛 = 2 mm, otherwise due to boundary effects method 

of the maximum inscribed sphere radius provided erroneous results. 

Artery wall thickness, ℎwall, was defined to be proportional to the artery lumen 

radius ℎwall = 2 ∙ 𝑅(𝜉)/5 (Polak et al., 2010), where 0 ≤ 𝜉 ≤ 1 is the parametrization 

of the smoothed out centerline 

 

 

A 

B 

a) b) 
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Fig. 20. Blue curve represents the initial radius (R initial) obtained by the “VMTK 1.3” 

software. Dashed red curve represents the modified radius (R modified), which is initial 

radius adopted to generate a 3D geometry. Figure adapted from Fig. 9 in (Misiulis et al., 

2019) 

 

 

Fig. 21. Blue curve represents the Fourier fit, black dots represent the obtained maximum 

inscribed sphere radius at smoothed out centerline parameterized by 𝜉. Figure adapted from 

Fig. 10 in (Misiulis et al., 2019) 
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Fig. 22. a) a view of the MRI data in the “VMTK 1.3” software, b) patient-specific geometry 

(transparent white) created using the centerline obtained from the patient-specific geometry 

(wireframe red). Figure reproduced from Fig. 11 in (Misiulis et al., 2019) 

The obtained patient-specific ICA geometry (shown in Fig. 22 b)) was meshed 

with a 11200 hexahedral mixed finite elements (Fig. 23) discretized with quadratic 

Lagrange shape function. 5 × 28 × 80 elements were used in radial, circumferential 

and longitudinal directions to resolve stress gradients. 

 

Fig. 23. Computational mesh and slices selected for the evaluation. Figure adapted from Fig. 

12 in (Misiulis et al., 2019) 
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3.1.3.2 Comparison of fiber directions obtained with different methods for 

the patient-specific ICA 

The mean fiber directions obtained by both fiber definition methods (chapter 

2.2.3.4) are presented in Fig. 24 a) while their differences are shown in Fig. 24 b). 

    

Fig. 24. Obtained mean fiber directions on the mesh nodes on the internal surface of ICA: a) 

blue and red arrows correspond to the mean fiber directions obtained with method I and 

method II, respectively, b) difference between the mean fiber directions. Figure adapted from 

Fig. 13 in (Misiulis et al., 2019) 

From Fig. 24 a) it can be seen that mean fiber directions in a large portion of 

ICA was comparable. The average mean difference of fiber directions represented by 

the angle between vectors did not exceed 3.9 degrees in the whole volume of ICA 

wall, however, there were some regions were the difference in mean fiber directions 

were 0.01 degrees as well as regions were the difference reached 18 degrees (Fig. 24 

b)). In terms of the percentage error the mean fiber directions defined by different 

methods did not exceed 17.73 % (at least 0.05 %, at most 81.82 %). The percentage 

error was calculated as follows: ∆𝛽 = |𝛽𝐼 − 𝛽𝐼𝐼| 𝛽𝑝⁄ ∙ 100 %, where 𝛽𝐼 corresponds 

to the fiber direction obtained with method I, 𝛽𝐼𝐼 corresponds to the fiber direction 

obtained with the method II, and 𝛽𝑝 is the prescribed angle. 

3.1.3.3 The mechanical behavior of the patient-specific ICA 

The static mechanical analysis of the patient-specific ICA, whose mechanical 

behavior was defined by the extended HGO constitutive material model Eq. (70), was 

a) b) 
deg 
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performed with the material parameters based on the mean ICA material values 

provided in (Sommer et al., 2012) (shown in Table 2). 

Table 2. Patient-specific ICA material parameters reproduced from (Sommer et al., 2012) 

(the mean of the intact ICA wall). 

𝜇 (kPa) 𝑘1 (kPa) 𝑘2 𝛽 (°) ƍ 

29.7 27.8 64.2 22 0.8 

 

ICA ends were prescribed to be immovable while the load was applied on the 

internal lumen surface. Also, the spring foundation was prescribed on the internal 

lumen surface with the spring constant 𝑘 = 1 ∙ 106, which was determined to have 

minimal effect on stresses and was used to prevent any rigid motion. It was assumed 

that two fiber families were mechanically equivalent and therefore 𝐼4̅ = 𝐼6̅. 

The GPA was used to pre-load the ICA for up to the diastolic pressure of 80 

mmHg and forward analysis was carried out from 80 mmHg to 180 mmHg in 

increments of 10 mmHg. The circumferential component of Cauchy stress obtained 

at the systolic pressure of 120 mmHg is shown in Fig. 25 b). The maximum percentage 

difference of the maximum stress values at slice locations (1, 2, 3) was less than 10 

%, and the percentage error of the mean stress in the whole volume of ICA wall did 

not exceed 0.1 %. 

    

 

  

 

Fig. 25. The circumferential component 𝜎𝜃𝜃 of Cauchy stress in [kPa] at 120 mmHg internal 

pressure. Numbers corresponds to slices presented in Fig. 23. Figure adapted from Fig. 14 in 

(Misiulis et al., 2019) 

3.2 Numerical investigation of the nICP measurement 

We introduce the referential numerical model of a straight OA, which can be 

used as a general model that is easier to implement and test out, also it is a good 

reference based on which the effects of curvature can be evaluated by comparison 

1 1 2 2 

3 3 
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with a model in which a patient-specific artery is introduced. Both cases, case of a 

straight artery and case of a patient-specific artery have many conditions in common, 

therefore in the beginning we introduce common conditions and afterwards we 

introduce the results of the model of a straight OA and patient-specific OA. 

3.2.1 Definition of parameters, boundary and initial conditions for straight 

and patient-specific OA models 

The pulsatile blood flow in the compliant OA and their interaction was solved 

based on the governing equations presented in chapters 2.2.3.1 and 2.2.3.5. 

The histologically motivated artery wall constitutive model (presented in 

chapter 2.2.3.3) that is stimulated by the mechanical effects of fibrous collagen 

structure inside the artery wall was implemented in our OA models. This is currently 

a state-of-the-art hyperelastic phenomenological model used in many scientific 

problems (Holzapfel et al., 2009, Nolan et al., 2014a, Carlsen et al., 2015, Leng et al., 

2015, Montalvo Navarrete et al., 2017, Vu et al., 2018) especially regarding the artery 

wall (Gasser et al., 2006, Helfenstein et al., 2010, Zdunek et al., 2017, Leng et al., 

2018, Wang et al., 2018) as it is able to accurately reproduce mechanical behavior and 

an exponential stiffening effect common to arteries. 

It was assumed that two fiber families were mechanically equivalent and, 

therefore, 𝐼4̅ = 𝐼6̅ (Nolan et al., 2014b). 

Blood was considered as incompressible, Newtonian fluid (presented in chapter 

2.2.3.7) and at the inlet started as a fully developed laminar flow. The consideration 

of the Newtonian blood flow model is justified by the fact that OA is larger than 1 

mm and therefore the shear rate was expected to be larger than 100 s-1 everywhere in 

the OA and at every time moment. 

Arbitrary Lagrangian-Eulerian (ALE) formulation (presented in chapter 2.1.2) 

was used to describe the deformations of the fluid domain (Benselama et al., 2007). 

The artery wall was formulated in material description, while blood domain was 

formulated in ALE formulation and therefore in a deformable mesh description. ALE 

formulation allowed us to track the boundary interface between blood and artery wall, 

and therefore to solve the FSI problem. 

A transient fluid-structure interaction (FSI) simulation of the blood flow in a 

compliant OA was performed. Boundaries 𝛤1 (in IOA segment) and 𝛤2 (in EOA 

segment) were affected by the pressure 𝐼𝐶𝑃1,𝑖 and 𝑃𝑒, respectively (shown in Fig. 27 

and Fig. 34). The wall of the OA was considered as nearly incompressible (Carew et 

al., 1968), hyperelastic material composed of two layers (in case of straight OA) and 

composed of one layer (in case of patient-specific OA), of which mechanical 

characteristics were defined by material parameters. 
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Table 3. Basic material parameters 

Blood properties Notation Value Units 

Effective dynamic viscosity (Milnor, 1990) 𝜇𝑓 0.003675 kg·m-1·s-1 

Density (Cutnell et al., 1997) 𝜌𝑓 1060 kg·m-3 

OA wall properties Notation Value Units 

Density (Kuhl et al., 2007) 𝜌𝑠 1100 kg·m-3 

 

Table 4. Basic simulation parameters 

Simulation parameters Notation Value Units 

Duration of one heartbeat pulse period (Holdsworth et al., 

1999) 
𝑇 1 s 

Duration of initialization 𝑡𝑖𝑛𝑖𝑡 1 s 

Duration of Pe = const 𝑡𝑐 2 s 

Duration of Pe loop 𝑡𝑃 3 s 

Peak value of velocity profile max. of one time period 𝑢𝑚𝑎𝑥𝑝𝑒𝑎𝑘 56.48 cm/s 

Surface averaged value of velocity profile max. of time 

period 
𝑢𝑚𝑎𝑥𝑚𝑒𝑎𝑛  28.24 cm/s 

Peak value of velocity profile min. of time period 𝑢𝑚𝑖𝑛𝑝𝑒𝑎𝑘 12.28 cm/s 

Surface averaged value of velocity profile min. of time 

period 
𝑢𝑚𝑖𝑛𝑚𝑒𝑎𝑛  6.14 cm/s 

Max. pressure of time period (Langham, 2009) 𝑃𝑠𝑦𝑠 80 mmHg 

Min. pressure of time period (Langham, 2009) 𝑃𝑑𝑖𝑎𝑠 40 mmHg 

Magnitude of the increase in 𝐼𝐶𝑃1,𝑖 𝑠𝐼𝐶𝑃 10 mmHg 

Amplitude of 𝐼𝐶𝑃𝑖  (function of 𝑖) 
𝐴𝐼𝐶𝑃
= 𝑠𝐼𝐶𝑃(𝑖 − 1) 

mmHg 

Amplitude of 𝑃𝑒 𝐴𝑃𝑒 38 mmHg 

Magnitude of the increase in 𝑃𝑒 𝑠𝑃𝑒 2 mmHg 

 

We assumed that the rate of change of 𝐼𝐶𝑃 is negligible during one heartbeat 

pulse period, therefore the 𝐼𝐶𝑃 was constant throughout the heartbeat pulse period. It 

was assumed that 𝐼𝐶𝑃 is homogenously distributed on the surface it acts on. 

𝐼𝐶𝑃 was prescribed as a Neumann boundary condition based on Eq. (69) and 

Eq. (91) as a function dependent on time 𝐼𝐶𝑃𝑖(𝑡) acting on the outside surface of IOA 

wall segment 𝛤1 as follows: 

 𝐼𝐶𝑃𝑖 = 𝐴𝐼𝐶𝑃(𝑖) {

𝑡

𝑡𝑖𝑛𝑖𝑡
, 𝑡 < 𝑡𝑖𝑛𝑖𝑡

1, 𝑡 ≥ 𝑡𝑖𝑛𝑖𝑡

 (91) 

For a healthy adult in the supine position, normal ICP is in the range between 7 

mmHg and 15 mmHg (Steiner et al., 2006), for children between 3 mmHg and 7 

mmHg, for term infants from 2 mmHg and 6 mmHg, and for pathological patients, 

ICP can exceed 25 mmHg (Dunn, 2002). Aforementioned ICP values motivated us to 

set ICP lower limit to 0 mmHg and upper limit to 30 mmHg and in case of a straight 
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OA the set of ICP amplitude values was, 𝐴𝐼𝐶𝑃(𝑖) = {0, 10, 20, 30} mmHg, for 𝑖 =
1,2,3,4, while in case of patient-specific OA only one value 𝐴𝐼𝐶𝑃(𝑖) = 10 mmHg was 

used. 

𝑃𝑒 was prescribed as a Neumann boundary condition based on the Eq. (69) and 

Eq. (92) as a function dependent on time 𝑃𝑒(𝑡) acting on the outside surface of EOA 

wall segment 𝛤2 as follows: 

 𝑃𝑒 = {
𝑃𝑒𝑏 , 𝑡 > 𝑡𝑖𝑛𝑖𝑡
0, 𝑡 ≤ 𝑡𝑖𝑛𝑖𝑡

 (92) 

where 𝑃𝑒𝑏 was prescribed as follows: 

 

𝑃𝑒𝑏

= 𝑠𝑃𝑒  

{
 
 

 
 𝑡 − floor (

𝑡
𝑡𝑃
) 𝑡𝑃

𝑇
+ floor (

𝑡

𝑡𝑃
) − 1, 𝑡 − floor (

𝑡

𝑡𝑃
) 𝑡𝑃 < 𝑇

ceil (
𝑡 − 𝑡𝑃
𝑡𝑃

) , 𝑡 − floor (
𝑡

𝑡𝑃
) 𝑡𝑃 ≥ 𝑇

 
(93) 

Boundaries 𝛤3, 𝛤4 (shown in Fig. 27 and Fig. 34) were prescribed to be 

immovable based on the Dirichlet boundary condition Eq. (69) and the spring 

foundation was prescribed on interface boundary 𝛤𝑖 with a spring constant defined so 

as to have no effect on the stress field and only to limit the rigid motion. 

Laminar inflow boundary condition based on the Neumann boundary condition 

Eq. (69) was prescribed as a pressure function 𝑃𝑖𝑛(𝑡) acting on the surface of OA 

blood domain inlet. It was used to start the blood flow as fully developed at the inlet 

and was prescribed as follows: 

 𝑃𝑖𝑛 = {

𝑃𝑑𝑖𝑎𝑠𝑡

𝑡𝑖𝑛𝑖𝑡
, 𝑡 < 𝑡𝑖𝑛𝑖𝑡

𝑃𝑣 , 𝑡 ≥ 𝑡𝑖𝑛𝑖𝑡

 (94) 

where 𝑃𝑣 waveform was similar to 𝑣𝑖𝑛 waveform provided in Fig. 26 with a difference 

in amplitude where 𝑃𝑠𝑦𝑠 was pressure value at the systole and 𝑃𝑑𝑖𝑎𝑠 was pressure at 

the diastole. 

We considered a constant outlet pressure boundary condition at pre-calculated 

distance, which led to the periodic downstream vasculature resistance and therefore, 

it was not used to predict the behavior of downstream vasculature due to added 

external pressure, but was used to generate a typical velocity waveform Fig. 26. 

Laminar outflow boundary condition based on the Neumann boundary condition 

Eq. (69) was prescribed as a constant pressure function 𝑃𝑜𝑢𝑡(𝑡) acting on the surface 

of OA blood domain outlet and it was used to define the pressure 𝑃𝑜𝑢𝑡 at distance 

𝐿𝑒𝑥𝑖𝑡 as follows: 

 𝑃𝑜𝑢𝑡 = {

𝑃𝑑𝑖𝑠𝑡𝑡

𝑡𝑖𝑛𝑖𝑡
, 𝑡 < 𝑡𝑖𝑛𝑖𝑡

𝑃𝑑𝑖𝑠𝑡 , 𝑡 ≥ 𝑡𝑖𝑛𝑖𝑡

 (95) 
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A combination of variable inlet pressure 𝑃𝑖𝑛 and constant outlet pressure  

𝑃𝑑𝑖𝑠𝑡 = 70.15 mmHg Eq. (97) at the analytically calculated distance 𝐿𝑒𝑥𝑖𝑡 = 25.63 

cm Eq. (96), based on the Hagen-Poiseuille equation generated a uniform waveform 

of blood pressure and the blood velocity according to Fig. 26. 

 𝐿𝑒𝑥𝑖𝑡 =
𝑑𝑖𝑛𝑖𝑡
2 (𝑃𝑠𝑦𝑠 − 𝑃𝑑𝑖𝑎𝑠)

32𝜇(𝑢𝑚𝑎𝑥𝑚𝑒𝑎𝑛 − 𝑢𝑚𝑖𝑛𝑚𝑒𝑎𝑛)
 (96) 

 

 𝑃𝑑𝑖𝑠𝑡 = 𝑃𝑠𝑦𝑠 −
𝑢𝑚𝑎𝑥𝑚𝑒𝑎𝑛(𝑃𝑠𝑦𝑠 − 𝑃𝑑𝑖𝑎𝑠)

(𝑢𝑚𝑎𝑥𝑚𝑒𝑎𝑛 − 𝑢𝑚𝑖𝑛𝑚𝑒𝑎𝑛)
 (97) 

 

 

Fig. 26. Typical maximum blood flow velocity waveform in OA that was implemented in the 

numerical model. Figure adapted from Fig. 4 in (Misiulis et al., 2018) 

3.2.2 Case of the straight OA 

3.2.2.1 Model parameters 

Parameters presented in Table 5, and Table 6 are used to define the basic OA 

wall morphological parameters, and locations of data extraction. 
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Table 5. OA geometry parameters 

OA wall parameters Notation Value Units 

initial lumen diameter 𝑑𝑖𝑛𝑖𝑡  1.3 mm 

length of the OA (Hayreh, 2006) 𝐿 25.8 mm 

length of 𝛤1 (IOA) (Hayreh, 2006) 𝐿𝛤1  4.1 mm 

length of 𝛤5 (OC) (Liu et al., 2000) 𝐿𝛤5  12 mm 

length of 𝛤2 (EOA) (Hayreh, 2006) 𝐿𝛤2  9.7 mm 

wall thickness (Polak et al., 2010) ℎwall 0.18 mm 

 

Table 6. Locations of cross-sections were data was extracted 

Simulation parameters Notation Value Units 

distance from the OA starting location at which the data was 

collected at IOA segment 
𝐿𝑐,𝐼𝑂𝐴 2.058 mm 

distance from the OA starting location at which the data was 

collected at EOA segment 
𝐿𝑐,𝐸𝑂𝐴 20.834 mm 

3.2.2.2 Model setup 

OA geometry was composed of a blood domain Ω𝑏𝑙𝑜𝑜𝑑 and two OA wall 

domains: Ω𝑚𝑒𝑑𝑖𝑎 and Ω𝑎𝑑𝑣𝑒𝑛𝑡𝑖𝑡𝑖𝑎 shown in Fig. 27. Parameters defining the basic 

material properties of the blood, and of the OA wall are given in Table 3. As the data 

of additional parameters, required by constitutive material model for OA wall, are 

scarce in the scientific literature, ICA parameters were used instead (provided in Table 

7). 

Table 7. OA wall parameters used for fiber-reinforced double layer model based on ICA 

wall parameters according to (Sommer et al., 2012) 

Arterial wall parameters Adventitia Media 

Isotropic, 𝜇, kPa 28.3 17.6 

Anisotropic, 𝑘1, kPa 112.1 21.3 

Anisotropic, 𝑘2 100.6 17.3 

Fiber angle, 𝛽, deg 31.8 9.8 

Dispersion, ƍ, 1 0.9 0.8 

 

Structural information consisting of the wall thickness of OA, the internal vessel 

diameter, the length of the vessel and the lengths of IOA, OC, and EOA segments are 

provided in Table 5. 
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Fig. 27. The OA model geometry with depicted IOA, OC, EOA segments, blood and OA 

media and adventitia layer domains, boundaries of acting pressures Pe and ICP together with 

a cross-sectional scheme of OA and lines representing A and B cross-sections where the data 

was collected at the distances 𝐿𝑐,𝐼𝑂𝐴 and 𝐿𝑐,𝐸𝑂𝐴, respectively. Figure adapted from Fig. 3 in 

(Misiulis et al., 2018) 

Based on (Misiulis et al., 2017), the geometry was discretized into 71644 finite 

elements, with 49734 elements for blood domain, 13506 elements for tunica media 

domain, and 8404 elements for tunica adventitia domain. 

3.2.2.3 Analysis of simulation results 

In total 𝑛 ∙ 60 time periods were modeled, where 𝑛 = 4 is the number of 

simulations and 𝑖 = 1: 𝑛̅̅ ̅̅ ̅ is the study index/number. The first time period was used to 

initialize the simulation by gradually increasing the inlet pressure 𝑃𝑖𝑛 from 0 mmHg 

to 40 mmHg, outlet pressure 𝑃𝑜𝑢𝑡 from 0 mmHg to 𝑃𝑑𝑖𝑠𝑡 and 𝐼𝐶𝑃𝑖 from 0 mmHg to 

{0, 10, 20, 30} mmHg depending on the study number 𝑖. After initialization 𝐼𝐶𝑃 was 

held constant, while 𝑃𝑒 changed according to Eq. (92), 𝑃𝑒 = 0: 2: 38 mmHg. 

Starting from 𝑡 =  0 𝑠, the data was collected at every time step 𝑡𝑠 = 0.004 𝑠 
for all 𝑛 ∙ 60 hearbeat pulse periods. During simulation blood density and blood 

dynamic viscosity was constant, while the blood velocity and the lumen diameter was 

dynamic parameters. The maximum 𝑅𝑒𝑚𝑎𝑥 = 𝜌𝑓|𝐯𝑓(𝑡𝑠𝑦𝑠)|𝑑(𝑡𝑠𝑦𝑠) 𝜇⁄ = 129, where 

𝑡𝑠𝑦𝑠 is the time of systole and minimum 𝑅𝑒𝑚𝑖𝑛 = 𝜌𝑓|𝐯𝑓(𝑡𝑑𝑖𝑎𝑠)|𝑑(𝑡𝑑𝑖𝑎𝑠) 𝜇⁄ = 24.7, 

where 𝑡𝑑𝑖𝑎𝑠 is the time of diastole Reynolds numbers were calculated from all data 

𝛤1 

𝛤2 

𝛤3 

𝛤4 

𝛤5 

𝐿𝑐,𝐼𝑂𝐴 

𝐿𝑐,𝐸𝑂𝐴 
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points to justify the assumption of laminar blood flow. In addition, the Womersley 

number was calculated and found to be approximately equal to 𝛼 ≈  0.86. 

From all the data available, only the specific data on the cross-sections A and B 

(Fig. 27) were selected (𝑖 = {𝐴, 𝐵}), i.e. the cross-sectional area 𝑆𝑖(𝑡), over the cross-

section averaged blood flow velocity < 𝑣𝑖(𝑡) > and the blood pressure < 𝑝𝑖(𝑡) >. 

Characteristic parameters are periodic in time, therefore, we denote 𝑡′ = mod(𝑡, 𝑇), 
which allows us to compare the results on a single time scale, and to evaluate the 

influence of 𝐼𝐶𝑃 and 𝑃𝑒. With 𝑡′ introduced the functional dependence of 

characteristic parameters becomes as follows: 𝑆𝑖(𝑡
′, 𝐼𝐶𝑃, 𝑃𝑒), < 𝑣𝑖(𝑡

′, 𝐼𝐶𝑃, 𝑃𝑒) > 

and < 𝑝𝑖(𝑡
′, 𝐼𝐶𝑃, 𝑃𝑒) >. Next, we omit the variables in brackets and use only 𝑆𝑖, <

𝑣𝑖 > and < 𝑝𝑖 >. In general we denote the characteristic parameter as follows: 𝑐𝑖 =
{𝑆𝑖, < 𝑣𝑖 >,< 𝑝𝑖 >}. 

 

 

 

 
 

 

 

 

 

Fig. 28. Cross-sectional area difference between A and B cross-sections, denoted as ∆𝑆, and 

over the heartbeat pulse period averaged ∆𝑆, denoted as ∆�̂�, dependence on 𝑡′, 𝐼𝐶𝑃 and 𝑃𝑒 

Differences of the blood flow parameters between the OA segments affected by 

𝐼𝐶𝑃 and 𝑃𝑒 are important during the nICP measurement. The differences between A 

and B cross-sections of the 𝑆𝑖, < 𝑣𝑖 > and < 𝑝𝑖 > are as follows: ∆𝑆 = 𝑆𝐴 − 𝑆𝐵, <
∆𝑣 >=< 𝑣𝐴 > −< 𝑣𝐵 > and < ∆𝑝 >=< 𝑝𝐴 > −< 𝑝𝐵 >. In general we denote the 
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difference of the characteristic parameter between A and B cross-sections as follows: 

∆𝑐 = {∆𝑆, < ∆𝑣 >,< ∆𝑝 >}. 

The differences in cross-sectional areas were divided by 𝑆𝑚 =
�̂�𝐴−�̂�𝑗

2
, were �̂�𝐴 is 

the over the heartbeat pulse period averaged cross-sectional area at cross-section A, 

�̂�𝑗 is the over the heartbeat pulse period averaged cross-sectional area at cross-section 

𝑗, were in this case 𝑗 = {𝐵}. 

The differences in mean blood flow velocity were divided by 𝑣𝑚 =
�̂�𝐴−�̂�𝑗

2
, were 

𝑣𝐴 is the over the heartbeat pulse period averaged mean blood flow velocity at cross-

section A, 𝑣𝑗 is the over the heartbeat pulse period averaged mean blood flow velocity 

at cross-section 𝑗, were in this case 𝑗 = {𝐵}. 
Over one heartbeat pulse period averaged ∆𝑆, < ∆𝑣 > and < ∆𝑝 > are denoted 

as ∆�̂�, < ∆�̂� > ir < ∆�̂� >, respectively. In general the difference of the characteristic 

parameter between A and B cross-sections averaged over one heartbeat pulse period 

is denoted as follows: ∆�̂� = {∆�̂�,< ∆�̂� >,< ∆�̂� >}. 
We must note that the influence of 𝑃𝑒 and 𝐼𝐶𝑃 on the characteristic parameters 

not only depends on their difference but also on their respective values and therefore 

when we refer to the 𝑃𝑒 − 𝐼𝐶𝑃 we also refer to the given 𝑃𝑒 and 𝐼𝐶𝑃 values.  

∆𝑆 and ∆�̂� dependence on the 𝑡′, 𝐼𝐶𝑃 and 𝑃𝑒 is shown in Fig. 28. From Fig. 28 

it can be seen that when 𝑃𝑒 –  𝐼𝐶𝑃 becomes close to a value that we denote as 𝑖𝑛𝑣, 

then changing the 𝑃𝑒 –  𝐼𝐶𝑃 in the same direction as before, results in the inversion of 

∆𝑆 with respect to the time axis 𝑡′. This means that the change in dynamics of the 

standard deviation of 𝑆𝐴 and 𝑆𝐵 is due to the change in acting pressures, i.e. the change 

in 𝑃𝑒 –  𝐼𝐶𝑃 value. These processes are due to the non-linear artery wall constitutive 

model. 

The standard deviation of the ∆𝑆 (Fig. 29) (or characteristic parameter ∆𝑐) is 

calculated as follows: 

 SD(∆𝑐) = √
∑ (∆𝑐𝑖 − ∆�̂�)

2𝑛
𝑖=1

𝑛
 

(98) 

From Fig. 29 it can be seen that the standard deviation of ∆𝑆 becomes the lowest 

when 𝑃𝑒 –  𝐼𝐶𝑃 → 𝑖𝑛𝑣, irrespectively of the specific values of 𝑃𝑒 and 𝐼𝐶𝑃. 
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Fig. 29. The dependence of the standard deviation of the ∆𝑆 on Pe and ICP 

A heartbeat pulse averaged difference < ∆𝑝 >, denoted as < ∆�̂� >, dependence 

on the parameters 𝐼𝐶𝑃 and 𝑃𝑒 is depicted in Fig. 30. It can be seen that < ∆�̂� > 

changes nonlinearly with respect to 𝐼𝐶𝑃 and 𝑃𝑒. This nonlinear change is due to 

nonlinear change in ∆𝑆. When 𝐼𝐶𝑃 =  𝑃𝑒 = {0, 10, 20, 30} mmHg, then < ∆�̂� > =
{1.112, 1.124, 1.141, 1.164} mmHg. < ∆𝑣 > and < ∆�̂� > dependence on 𝑡′, 𝐼𝐶𝑃 and 

𝑃𝑒 is shown in Fig. 31. From Fig. 31 it can be seen that unlike ∆𝑆 case, when 

𝑃𝑒 –  𝐼𝐶𝑃 → 𝑖𝑛𝑣, then < ∆𝑣 > does not tend towards the < ∆�̂� >. 

 

Fig. 30. Over a heartbeat pulse period averaged < ∆𝑝 >, denoted as < ∆�̂� >, dependence on 

the 𝐼𝐶𝑃 and 𝑃𝑒 
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Fig. 31. Surface averaged blood flow velocity difference between A and B cross-sections, 

denoted as < ∆𝑣 >, and over a heartbeat pulse period averaged < ∆𝑣 >, denoted as < ∆�̂� >, 

dependence on 𝑡′, 𝐼𝐶𝑃 and 𝑃𝑒 

As the 𝑃𝑒 or 𝐼𝐶𝑃 increases, the standard deviation of the < ∆𝑣 > determined 

by Eq. (98) also increases (Fig. 32). 

 

Fig. 32. The dependence of the standard deviation of the < ∆𝑣 > on Pe and ICP 
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∆�̂� and < ∆�̂� > dependence on 𝐼𝐶𝑃 and 𝑃𝑒 is shown in Fig. 33 a) it can be seen 

that when ∆�̂� = 0, then 𝐼𝐶𝑃 =  𝑃𝑒 ± 𝜀, where 𝜀 is the deviation from the balance 

condition at < ∆�̂� > = 0. From Fig. 33 b) we can see that the same is true for the 

blood velocity, only the deviation based on < ∆�̂� > differ from the deviation obtained 

based on ∆�̂�, therefore the deviation based on ∆�̂� is denoted as 𝜀𝑆 and the deviation 

based on < ∆�̂� > is denoted as 𝜀𝑣. The 𝜀𝑆 and 𝜀𝑣 are determined by evaluating the 

intersection point of curves, denoted as (ICP = 0, ICP = 10, ICP = 20, ICP = 30) with 

their respective axis. In this way 𝜀𝑆 = {−1.48,−1.37,−1.17} mmHg, and 𝜀𝑣 =
{−1.84,−1.76,−1.625} mmHg, when 𝐼𝐶𝑃 = {10, 20, 30} mmHg. The difference 

between 𝜀𝑆 and 𝜀𝑣 is due to artery compliance in the region between A and B cross-

sections. As the artery expands it creates additional volume between A and B cross-

sections, which is occupied by incoming blood flow, and as the artery contracts this 

volume is reduced. However, when integrated over one heartbeat pulse period it turns 

out that the blood flow rate difference between A and B cross-sections is non-zero, 

leading to the aforementioned difference in deviations. We denote deviation due to 

compliance as 𝜀𝑐 = {−0.36,−0.39, −0.455} mmHg, when 𝐼𝐶𝑃 = {10, 20, 30} 
mmHg. The deviation due to compliance is dependent on the constitutive artery wall 

model, on the external material effect on the dynamics of the arterial blood pressure 

and on the initial lumen volume between A and B cross-sections. 

In case of ∆�̂� = 0, the systematic deviation 𝜀𝑆 would be 0 only if the mechanical 

conditions in cross-sections A and B would be equivalent and there would be no 

difference in acting pressures (Misiulis et al., 2016). Artery mechanical non-

equivalence means that it acts differently when subjected to the same loads. This is at 

least due to different internal stress distribution, which can be due to the difference in 

curvature, external tissue behavior (which can be imitated by appropriate boundary 

conditions), etc. In our case, based on (Misiulis et al., 2016) the mechanical non-

equivalence is due to the non-equivalent internal stress distribution between IOA and 

EOA segments and therefore in A and B cross-sections. We will denote the deviation 

due to mechanical non-equivalence, as 𝑝𝑎𝑑𝑑. From Fig. 33 a) at ∆�̂� = 0 the 𝑝𝑎𝑑𝑑 =
{−0.356,− 0.229,−0.006} mmHg. In (Misiulis et al., 2017), only one value of 𝐼𝐶𝑃 

was considered of 10 mmHg and the bifurcation site of OA from internal carotid artery 

effect was incorporated and modeled, while in this study imaginary bifurcation site at 

boundary 𝛤3 was prescribed to be immovable. In (Misiulis et al., 2017) it was obtained 

that 𝜀𝑆 = −0.5 mmHg, 𝑝𝑎𝑑𝑑 = 0.26 mmHg, 𝜀𝑣 = 1.1 mmHg and 𝜀𝑐 = 1.6 mmHg. 

While in this study, with 𝐼𝐶𝑃 =  10 mmHg these values were 𝜀𝑆 = −1.48 mmHg, 

𝑝𝑎𝑑𝑑 = −0.356 mmHg, 𝜀𝑣 = −1.84 mmHg, and 𝜀𝑐 = −0.36 mmHg. The difference 

in 𝑝𝑎𝑑𝑑 between this investigation and (Misiulis et al., 2017) suggests, that internal 

stress distribution differences due to bifurcation site reduces the deviation by 34%, 

while immovable boundary increases it by {31.67 %, 20.07 %, 0.5 %} (with the 

reference to < ∆�̂� > and 𝐼𝐶𝑃 = {10, 20, 30} mmHg). However, the effect on 

deviations in the model by (Misiulis et al., 2017) may change with the change in 𝐼𝐶𝑃 

as suggested by current investigation where 𝑝𝑎𝑑𝑑 decreased with 𝐼𝐶𝑃 value reducing 

effect on the deviations. Artery compliance between selected A and B cross-sections 

increased the deviation by 210% in the study of (Misiulis et al., 2017), while in this 
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study it increased the deviation by {32 %, 34 %, 39%} (with reference to < ∆�̂� > and 

𝐼𝐶𝑃 = {10, 20, 30} mmHg). The effect of compliance cannot be directly compared 

with the results of (Misiulis et al., 2017) as the initial volume between A and B cross-

sections, constitutive artery wall model, arterial blood pressure dynamics and the 

external material effect was different. 

  

Fig. 33. a) Over a heartbeat pulse period averaged cross-sectional area difference between A 

and B cross-sections ∆�̂� dependence on 𝐼𝐶𝑃 and 𝑃𝑒, b) Over a heartbeat pulse period and 

surface averaged blood flow velocity difference between A and B cross-sections < ∆�̂� > 

dependence on 𝐼𝐶𝑃 and 𝑃𝑒 

In conclusion, for the straight OA at 𝐼𝐶𝑃 =  {10, 20, 30} mmHg the systematic 

deviations of the nICP method estimated based on ∆𝑆 and < ∆𝑣 > was 

{−1.48,−1.37,−1.17} mmHg and {1.84,−1.76,−1.625} mmHg, respectively. 

3.2.3 Case of the patient-specific OA 

3.2.3.1 Model setup 

The shape of the patient-specific OA was reconstructed from the MR imaging 

data based on the method provided in chapter 2.2.1. The obtained shape was prepared 

for solving with FEM by discretizing it into 19840 finite elements, of which 4800 

hexahedral elements were used for the artery wall, 3200 hexahedral elements were 

used to resolve high blood flow boundary layer gradients and 11840 prism elements 

were used for the bulk of the blood flow. The fiber structure in the OA wall was 

defined in the local cylindrical coordinate system based on Eq. (79). The local 

cylindrical coordinate system was obtained by implementing our proposed Method I, 

which is provided in chapter 2.2.3.4. The graphical representation of aforementioned 

steps is provided in Fig. 34. 

 

a) b) 

<
∆
�̂�
>
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Fig. 34. The process of geometry reconstruction and fiber structure definition in a patient-

specific OA: a) the volume of interest that encompasses OA obtained from MR imaging data 

b) a centerline obtained with VMTK software, c) volumetric OA containing the blood flow 

domain and a single layered artery wall, d) OA discretized into finite elements, e) the fibrous 

structure generated at every point in the OA wall 

OA geometry was composed of the blood domain Ω𝑏𝑙𝑜𝑜𝑑 and OA wall domain 

Ω𝑤𝑎𝑙𝑙. Parameters defining the basic material properties of the blood, and of the OA 
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wall are given in Table 3. As the data of additional parameters, required by 

constitutive material model for OA wall, are scarce in the scientific literature, ICA 

parameters were used instead (provided in Table 8), as in case of a straight OA model. 

Table 8. OA wall parameters used for fiber-reinforced intact layer model based on ICA wall 

parameters according to (Sommer et al., 2012) 

Arterial wall parameters Intact 

(both media and adventitia) 

Isotropic, 𝜇, kPa 29.7 

Anisotropic, 𝑘1, kPa 27.8 

Anisotropic, 𝑘2 64.2 

Fiber angle, 𝛽, deg 22.0 

Dispersion, ƍ, 1 0.8 

 

The OA was prestressed for up to the diastolic pressure of 40 mmHg according 

to method provided in chapter 2.2.2. The results were obtained from a total of 9 

heartbeat pulse periods with 𝐼𝐶𝑃 =  10 mmHg and 𝑃𝑒 =  0: 18: 36 mmHg. The data 

was saved every 0.004 s. Obtained highest and lowest values of 𝑅𝑒 and 𝛼 were close 

to the values obtained in case of the straight OA. 

3.2.3.2 Definition of cross-sections for the data extraction 

In case the provided 3D artery shape can be described by the analytical function 

the definition of the cross-section for the data extraction is a trivial task e.g. the 

location of the center point of the arbitrary cross-section can be obtained from the 

analytical function of the parametrized centerline, while the normal can be obtained 

from the gradient of the centerline at that point. However, in case the analytical 

expression is unavailable the cross-section definition can become a challenging task, 

as the normal direction cannot be trivially obtained. In such case we propose to 

implement the method I (presented in chapter 2.2.3.4) to define the curvilinear 

coordinate system in the lumen volume by prescribing the Dirichlet boundary 

condition on the lumen inlet and outlet, and Neumann boundary condition on the walls 

that are in direct contact with the artery wall. The obtained gradient of the scalar field 

should be a good approximation of the gradient of the centerline that was unavailable 

in a first place. Now with the gradient and the arbitrary point in the artery domain the 

cross-section of the patient-specific artery can be defined. 

3.2.3.3 Analysis of simulation results 

Based on method (presented in 3.2.3.2) four cross-sections of OA denoted as A, 

B, C and D (depicted in Fig. 35) are defined on which the data of characteristic 

parameters 𝑆, 𝑝 and 𝑣 were extracted. The results were normalized in the same way 

as in the case of a straight OA. 
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Fig. 35. The cross-sections were data for the analysis was collected 

Cross-section A is in the OA segment that is affected by ICP, cross-sections B, 

C and D are in the OA segment that is affected by Pe. The distance between the cross-

section A and the other cross-sections along the OA is denoted as 𝑙𝑖, where 𝑖 ∈
{1, 2, 3} ← {𝑙(𝐴, 𝐵), 𝑙(𝐴, 𝐶), 𝑙(𝐴, 𝐷)}. In general 𝑙 will refer to the distance between 

nICP measurement locations. The cross-sections B, C and D from the cross-section A 

are away by an incremental distance 𝑙𝑖 = {9.03, 15.11, 22.08} mm. In general, the 

characteristic parameter dependence on the distance between the measurement 

locations is denoted as follows: ∆𝑐𝑖, where 𝑖 ∈ {1, 2, 3} ← {𝑙(𝐴, 𝐵), 𝑙(𝐴, 𝐶), 𝑙(𝐴, 𝐷)}. 

 

Fig. 36. Over a heartbeat pulse period averaged < ∆𝑝𝑖 >, denoted as < ∆𝑝�̂� >, dependence 

on the 𝐼𝐶𝑃, 𝑃𝑒 and the distance 𝑙, were higher index 𝑖 value indicates greater distance 

between cross-sections 
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Fig. 37. Cross-sectional area difference ∆𝑆𝑖 and over the heartbeat pulse period averaged 

∆𝑆𝑖, denoted as ∆𝑆�̂�, dependence on 𝑡′, 𝐼𝐶𝑃, 𝑃𝑒 and the distance 𝑙 were higher index 𝑖 value 

indicates greater distance between cross-sections 

A heartbeat pulse averaged internal pressure difference < ∆𝑝(𝑙) >, denoted as 

< ∆�̂�(𝑙) >, dependence on the parameters 𝐼𝐶𝑃 and 𝑃𝑒 at increasing distance 𝑙 is 

depicted in Fig. 36. The < ∆�̂�(𝑙) > increases with the increase in 𝑃𝑒 more when the 

distance between cross-sections in question is higher. This is due to the fact that the 

larger portion of OA is compressed by the external pressure, which leads to higher 

decrease in the lumen volume between cross-sections. Based on the Hagen-Poiseuille 

equation, in order to maintain the same blood flow rate through smaller vessel an 

increase in blood flow velocity and therefore increase in pressure difference is 

required, which is in consistence with the results presented in Fig. 36. As < ∆𝑝(𝑙) > 

is dependent on the distance between cross-sections, so do other characteristic 

parameters are dependent not only on the 𝐼𝐶𝑃 and 𝑃𝑒 but also on the < ∆𝑝(𝑙) > or 

on the distance 𝑙. 
∆𝑆 and ∆�̂� dependence on the 𝑡′, 𝐼𝐶𝑃 and 𝑃𝑒 is shown in Fig. 37. From Fig. 37 

it can be seen that the value of 𝑃𝑒 –  𝐼𝐶𝑃, at which the inversion of ∆𝑆𝑖 occurs with 

respect to the time axis 𝑡′ depends on the distance 𝑙. From Fig. 38 a) it can be seen 

that there exists a unique min(SD∆𝑆𝑖) value at a certain values of distance 𝑙 and 𝑃𝑒 −

 𝐼𝐶𝑃. When increasing the distance 𝑙, min(SD∆𝑆𝑖) shifts towards higher 𝑃𝑒 –  𝐼𝐶𝑃 
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value (Fig. 38 b), which means that there exists a distance 𝑙 at which min(SD∆𝑆𝑖) will 

be reached when 𝑃𝑒 = 𝐼𝐶𝑃. This is due to the non-linear constitutive OA wall 

material model as the artery compliance change due to changes in acting external 

forces. 

  

Fig. 38. The dependence of the standard deviation of the ∆𝑆𝑖  on Pe, ICP and the distance 𝑙: 
a) shows how SD∆𝑆𝑖 changes at a certain distance 𝑙 when changing Pe – ICP, b) shows how 

SD∆𝑆𝑖  changes given a certain Pe – ICP value and changing the distance 𝑙 

The standard deviation of the ∆𝑆𝑖 approaches the lowest value depending on the 

value of < ∆𝑝�̂� >. Since the value of 𝑃𝑒 is known, and if the distance 𝑙 or < ∆𝑝�̂� > is 

also known, at which the standard deviation of the ∆𝑆𝑖 is the lowest, e.g. SD∆𝑆𝑖 =

min(SD∆𝑆𝑖), ICP can be obtained based on the result shown in Fig. 39. Plus marks in 

Fig. 39 indicate a situation when SD∆𝑆𝑖 = min(SD∆𝑆𝑖).  

The surface averaged blood flow velocity difference < ∆𝑣𝑖 > and over the 

heartbeat pulse period averaged < ∆𝑣𝑖 >, denoted as < ∆�̂�𝑖 >, dependence on 𝑡′, 𝐼𝐶𝑃 

and 𝑃𝑒 at the increasing distance 𝑙 is shown in Fig. 40. 

 

 

Fig. 39. Over a heartbeat pulse period averaged < ∆𝑝 >, denoted as < ∆�̂� >, dependence on 

the 𝐼𝐶𝑃 and 𝑃𝑒. The plus sign represents the situation, in which SD∆𝑆𝑖 = min(SD∆𝑆𝑖) 
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Fig. 40. Surface averaged blood flow velocity difference denoted as < ∆𝑣𝑖 >, and over a 

heartbeat pulse period averaged < ∆𝑣𝑖 >, denoted as < ∆𝑣�̂� >, dependence on 𝑡′, 𝐼𝐶𝑃, 𝑃𝑒 

and the distance 𝑙, were higher index 𝑖 value indicates greater distance between cross-

sections 

From Fig. 40 it can be seen that unlike the case of ∆𝑆𝑖, there is no inversion of 

< ∆𝑣𝑖 > with respect to the time axis 𝑡′, when changing the value of 𝑃𝑒 –  𝐼𝐶𝑃. 

Decreasing the distance 𝑙, standard deviation of the < ∆𝑣𝑖 > decreases and the 

inversion of < ∆𝑣𝑖 > with respect to the time axis 𝑡′ is expected at 𝑙 =  0 mm (Fig. 

41). Due to the compliant artery wall there exists a momentary difference in blood 

flow rate between the cross-sections under consideration. As the distance between 

cross-sections increases, the dynamics of blood flow rate shifts in time, resulting in 

the dynamics of blood velocity differences seen in Fig. 40. From Fig. 41 it can be seen 

that the standard deviation of the < ∆𝑣𝑖 > is proportional to the distance 𝑙. 
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Fig. 41. The dependence of the standard deviation of the < ∆𝑣𝑖 > on Pe, ICP and the 

distance 𝑙 

The dependence of ∆�̂�𝑖 and < ∆�̂�𝑖 > on 𝐼𝐶𝑃, 𝑃𝑒 and the distance between cross-

sections is shown in Fig. 42 a) and Fig. 42 b), respectively. 𝜀𝑆𝑖 and 𝜀𝑣𝑖 are determined 

by finding the intersection point between the curve of characteristic parameter and the 

corresponding axis. In this way 𝜀𝑆𝑖 = {−2.18,−2.24,−2.99} mmHg and 𝜀𝑣𝑖 =

{−0.04,−2.83,−4.63} mmHg. In case of a rigid artery when ∆�̂�𝑖 =  0 then < ∆�̂�𝑖 >
 = 0, however in case of a compliant artery the blood capacity between cross-sections 

in question may increase or decrease. When integrated over a one heartbeat pulse 

period it turned out that the blood flow rate difference between cross-sections may be 

non-zero, leading to the difference in systematic errors. Therefore, we denote 

systematic error due to compliance as 𝜀𝑘𝑖 and define it as follows: 𝜀𝑘𝑖 = 𝜀𝑣𝑖 − 𝜀𝑆𝑖 =

{2.14,−0.59,−1.64} mmHg. 

  

Fig. 42. a) Over a heartbeat pulse period averaged cross-sectional area difference ∆�̂�𝑖 
dependence on 𝐼𝐶𝑃, 𝑃𝑒 and the distance 𝑙. b) Over a heartbeat pulse period and surface 

averaged blood flow velocity difference < ∆𝑣�̂� > dependence on 𝐼𝐶𝑃, 𝑃𝑒 and the distance 𝑙. 
Higher index 𝑖 value indicates greater distance between cross-sections 

The mechanical non-equivalence due to difference in the curvature and in the 

boundary conditions between cross-sections leads to the difference in the internal 

stress distribution, which produces another source of deviation (Misiulis et al., 2016). 
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The deviation due to mechanical non-equivalence from Fig. 42 a) at ∆�̂�𝑖 = 0 and at 

different distances is equal to 𝑝𝑎𝑑𝑑𝑖 = (−0.59, 0.43, 0.85) mmHg. 

All effects influencing the systematic deviation except the arterial pressure 

difference can affect it in both ways (reduce it or increase it) and this may explain the 

low systematic errors obtained in experimental studies by other authors (Ragauskas et 

al., 2012). 

In conclusion, for the patient-specific OA at the 𝐼𝐶𝑃 =  10 mmHg and for three 

different measurement distances 𝑙, the systematic deviation of the nICP method based 

on ∆𝑆𝑖 and < ∆𝑣𝑖 > was {−2.18,−2.24,−2.99} mmHg and {−0.04,−2.83,−4.63} 
mmHg, respectively. 

3.2.4 Limitations 

We provide several key limiting factors of the current investigation below: 

1) The resolution of MR imaging data was insufficient to reproduce OA shape with 

the accuracy required by the investigations, and therefore the OA radius was 

defined according to data presented in the scientific literature (Polak et al., 

2010). 

2) A stationary ICP value was prescribed, while in reality ICP is a dynamic 

function varying in time due to change in posture, brain activity, respiratory 

functions, etc. (Harary et al., 2018). In addition, it is not known how artificially 

added external pressure affects the ICP dynamics. In the future, in order to 

achieve more precise results, the pulsating behavior of ICP should be included 

and the investigation of how the added external pressure affects the ICP 

dynamics should be carried out. 

3) Outflow resistance was assumed to be proportional to the inlet blood flow, 

which is used as a first approximation of the eye’s vascular net resistance. Next 

step of the research would be the inclusion of an advanced model of eye’s 

vascular net resistance. 

4) ICA material parameters were used for OA, because to the author’s knowledge 

no information on material parameters of OA are present in the scientific 

literature regarding the fiber-reinforced artery wall model. As soon as OA 

material parameters are available, in order to increase the precision of the 

numerical model they should be incorporated. 

5) Only passive artery wall mechanical behavior was modeled, while active 

behavior, which is due to the smooth muscle cell contractions (Coccarelli et al., 

2018), should be included in the future. 

6) The mechanical behavior of surrounding tissues was not included in the 

numerical model. 
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3.3 The scope of the performed research 

3.3.1 Fluid flow regime 

When modeling the fluid flow it is important to evaluate the Reynolds 𝑅𝑒 and 

the Womersley 𝛼 numbers to properly simulate the pulsating flow. It is widely 

accepted that when 𝑅𝑒 < 2300 flow is laminar, when 𝑅𝑒 >  2900 is turbulent, and 

at 2300 < 𝑅𝑒 < 2900, the flow is in transition mode. 

For the pulsating flow there is a typical phase difference between the pressure 

gradient and the fluid velocity, which leads to the deviation of the fluid velocity profile 

from the laminar velocity profile. This can be estimated by the ratio of the time-inertial 

forces and the viscosity forces described by the non-dimensional Womersley number: 

 𝛼 = 𝐿(
𝜔𝜌

𝜇𝑓
)

1
2

 
(99) 

The force ratio described by the Womersley number allows us to compare 

systems, which are of different scales and in which a dynamic flow of fluid occurs. It 

is widely accepted that when 𝛼 ≤ 1 then the pulse rate is low enough and there is 

plenty of time for a parabolic velocity profile to develop during each cycle. When 𝛼 ≥
10, then the velocity profile becomes relatively flat and the average flow lags behind 

the pressure gradient by about 90 degrees. 

Generally, in various technological systems the flow needs to be analyzed within 

the wide range of these parameters. However, in our case, under the system in 

consideration (i.e. blood flow in the ophthalmic artery), based on experimental studies 

results carried out by different authors on different patients (Chien, 1981, Pries et al., 

1992, Rojanapongpun et al., 1993, Kwaan, 2010, Baskurt et al., 2013, Cherry et al., 

2013, Jeong et al., 2013, Cho et al., 2014, Tu et al., 2015, Michalinos et al., 2015, 

Reinhart, 2016) by considering the maximum values of the investigated samples, the 

𝑅𝑒 will not exceed 350, and 𝛼 will not exceed 1, so we can deduce that the flow mode, 

due to the inertial and viscosity force ratio, will be laminar, and during each heart 

pulse cycle the flow will produce a nearly fully developed parabolic velocity profile. 

In our study 𝑅𝑒 ranged from 24 to 129, 𝛼 ranged from about 0.86. Also, the 

properties of our blood substance, blood velocity, arterial pressure, and the diameter 

of the ophthalmic artery corresponded to the average values of a healthy person. 

3.3.2 Artery mechanics 

To the best of our knowledge, in the scientific literature there is no data on the 

properties of the ophthalmic artery, but, since the ophthalmic artery bifurcates from 

the internal carotid artery, we assumed that the elastic properties of the ophthalmic 

artery are close to those of the internal carotid artery (Gupta et al., 1997, Sommer et 

al., 2010, 2012). In our research, the passive mechanical behavior of the arterial wall 

was consistent with the elderly age of (76.8 + - 6.3 years), when atherosclerosis is 

estimated to be lower than the average. This mechanical behavior was published by 
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other scientists, who performed experimental tension-inflation tests while maintaining 

the artery submersed in the 37 °C temperature physiological saline. 

From the experimental data published by other scientists on mechanical 

behavior of internal carotid arteries (Sommer et al., 2010), we observe that although 

the principal course of stress-strain is similar between arteries, the intra- and inter- 

variations are also typical. In this research we did not investigated the influence of 

these variations, as we took the parameters corresponding to the average mechanical 

behavior of the internal carotid artery (Sommer et al., 2012). 

Another important parameter is the patient's age. From other authors' published 

data (Gupta et al., 1997) we see that arteries for younger people are more compliant 

than for the elderly. Artery compliance influences the results obtained, so in the future, 

with more experimental data available, numerical investigations may be performed in 

a wider range and the dependence of the values we examined on the different 

compliance of the artery can be determined. 

3.3.3 Artery geometry variations 

The variations in the shape and path of the ophthalmic artery between different 

patients is shown by (Hayreh, 1962a, 1962b, 1962c, 2006, Michalinos et al., 2015). 

Several most frequent shape and path variations can be distinguished. Here we 

analyzed one ophthalmic artery form that corresponds to one of the most frequent 

forms. 

3.3.4 Variations of intracranial pressure 

For a healthy adult in the supine position, normal ICP is in the range between 7 

mmHg and 15 mmHg (Steiner et al., 2006), for children between 3 mmHg and 7 

mmHg, for term infants from 2 mmHg and 6 mmHg, and for pathological patients, 

ICP can exceed 25 mmHg (Dunn, 2002). Aforementioned ICP values motivated us to 

set ICP lower limit to 0 mmHg and upper limit to 30 mmHg. 
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CONCLUSIONS 

After the numerical model of the blood flow of the patient-specific compliant 

ophthalmic artery was developed, with which the dependencies of the blood flow and 

of the potential systematic deviations of the non-invasive intracranial pressure 

measurement method were obtained from the measurement conditions and the 

characteristics of the blood flow when considering: 

 straight ophthalmic artery, when 𝑙 = 19 mm, 𝐼𝐶𝑃𝑖 = {10, 20, 30} mmHg, 𝑃𝑒 =
0: 2: 38 mmHg, 

 curved (patient-specific) ophthalmic artery, when 𝑙𝑖 = {9.03, 15.11, 22.08} 
mm, 𝐼𝐶𝑃 = 10 mmHg, 𝑃𝑒𝑖 = 0: 18: 36 mmHg, 

following conclusions were made: 

 

1. It was found that the percentage error of the directions of fiber structure defined 

in the arterial wall of the straight artery by our and other authors' methods in the 

whole artery wall did not exceed 2.75 %. For the curved artery, the average 

percentage difference of the fiber directions made by our and other authors' 

methods did not exceed 17.73% (the lowest did not exceed 0.05%, the highest 

did not exceed 81.82%). Comparison of the influence on the resulting stresses 

when the fibers were obtained with different fiber definition methods showed 

that the percentage difference of the mean circumferential stress within the 

arterial pressure range from 80 mmHg to 180 mmHg did not exceed 0.1 %. The 

directions of the fiber structure defined with our method is independent on the 

arterial wall material model. 

2. By increasing the external pressure, the lowest standard deviation of the 

difference in the cross-sectional area, from over the heartbeat pulse period 

averaged cross-sectional area difference, is obtained with the higher distance: 

 SD∆𝑆(𝑙1, 𝑃𝑒) = min(SD∆𝑆(𝑙1, 𝑃𝑒)) , kai 𝑃𝑒 = 0 mmHg ir 𝑙1 = 9.03 mm; 

 SD∆𝑆(𝑙2, 𝑃𝑒) = min(SD∆𝑆(𝑙2, 𝑃𝑒)) , kai 𝑃𝑒 = 18 mmHg ir 𝑙2 = 15.11 

mm; 

 SD∆𝑆(𝑙3, 𝑃𝑒) = min(SD∆𝑆(𝑙3, 𝑃𝑒)) , kai 𝑃𝑒 = 36 mmHg ir 𝑙3 = 22.08 

mm. 

3. The standard deviation of the difference in the mean blood flow velocity, from 

over the heartbeat pulse averaged mean blood flow velocity, is proportional to 

the distance: 

 SD<∆𝑣> =  𝐶 ∙ 𝑙, where 𝐶 is constant, depending on the values of Pe and 

ICP. 

4. By increasing the added external pressure or with the increasing  intracranial 

pressure, the standard deviation of the mean blood flow velocity difference, 

from over the heartbeat pulse period averaged mean blood flow velocity 

difference, increases: 

 SD<∆𝑣> = ∑ 𝑎𝑖𝐼𝐶𝑃
𝑖2

𝑖=0 + ∑ 𝑏𝑖𝑃𝑒
𝑖2

𝑖=0 , where 𝑎𝑖 and 𝑏𝑖 are constants. 

5. By increasing the prescribed intracranial pressure (𝐼𝐶𝑃 =  {10, 20, 30} 
mmHg), the systematic deviation 𝜀 based on the measurement parameters 
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decreases: the 𝜀 based on the cross-sectional area was 𝜀𝑆 =
{− 1.48,−1.37,−1.17} mmHg, and the 𝜀 based on the mean blood flow 

velocity was 𝜀𝑣 = {− 1.84,−1.76,−1.625} mmHg. 

6. By increasing the distance between the measurement locations (𝑙𝑖 =
{9.03, 15.11, 22.08} mm), the systemic error 𝜀 based on the measurement 

parameters  increases: the 𝜀 based on the cross-sectional area was 𝜀𝑆 =
{− 2.18,−2.24,−2.99} mmHg, and the 𝜀 based on the mean blood flow 

velocity was 𝜀𝑣 = {− 0.04,−2.83 ,−4.63} mmHg. 
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