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SUMMARY 

INTRODUCTION 

Tightening emission standards and growing energy needs pose challenges to the 

regulation of gaseous pollutants in combustion products. Alternative to wood, biofuels 

with higher sulfur and nitrogen content, which are the main sources of SO2 and NOx 

emissions, are being burned increasingly. The growing global focus on renewable 

energy and the reduction of CO2 emissions has led to an increase in research on this 

topic. Nevertheless, they do not examine in sufficient detail the emissions of the main 

pollutants emitted during the incineration of agricultural and industrial waste biomass 

– sulfur (SO2, SO3, H2S) and nitrogen (NO, NO2, N2O, HCN, NH3) compounds and 

emission reduction technologies in industrial reciprocating grate biofuel boilers. 

Boilers of this type usually produce thermal energy for the users of district heating 

network and various industrial and economic entities, hence they are located in or near 

a residential area, which are sensitive to atmospheric pollution. Studies are often based 

on theoretical assessments or results obtained on test benches, where the combustion 

conditions do not always correspond to the actual combustion conditions in 

industrial-size boilers. Scientific publications usually examine separate applications 

of reduction methods rather than combined ones, acting on several groups of 

pollutants, although the use of biomass can exceed both SO2 and NOx standards. 

Object of investigation 

The reduction of sulfur and nitrogen gaseous compounds in the flue gas of a 

medium combustion plant with a moving grate. 

The aim of the work 

To investigate the impact of combined primary and secondary measures on the 

reduction of nitrogen and sulfur emissions during the combustion of wood chips and 

agro-waste. 

The objectives of the thesis 

1. To investigate the reasons for fluctuations of pollutant concentration in biofuel 

boilers and prepare a methodology of the measurements; 

2. To investigate the effect of a combination of selective non-catalytic reagents and 

incomplete combustion products on the emissions of NO, NO2, N2O, NH3, HCN, SO2, 

SO3, and H2S; 

3. To investigate the effect of combined solid reagents and flue gas recirculation on 

the emissions of nitrogen and sulfur gaseous compounds; 

4. To investigate the effect of flue gas recirculation and partial combustion products 

on the emissions of nitrogen and sulfur gaseous compounds; 

5. To investigate the effect of flue gas recirculation and solid reagents on emission 

concentrations. 
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Scientific novelty of the work 

1. The combined effect of different emission reduction methods on gaseous 

pollutant emissions from the combustion of biofuels in moving grate boilers has been 

determined;  

2. Flue gas recirculation and partial combustion of biofuels reduce the emissions of 

certain pollutants but increase the emissions of other pollutants, thus a combination 

and optimization of different emission reduction measures is required depending on 

the N and S content of the fuel and the conditions of application of the measures. 

Practical significance of the work 

1. Based on the results of experimental research, a methodology for calculating the 

concentrations of NOx and SO2 has been developed, which allows for the optimal 

selection of emission reduction measures, namely, partial combustion, flue gas 

recirculation, reagent injection into moving grate biofuel boilers to reduce NOx and 

SO2 emissions and preliminary assessment of their effectiveness; 

2. A combined NOx, SO2, and H2S emission reduction system for industrial firetube 

boilers was developed, tested, and installed in boiler houses in the Netherlands, Czech 

Republic, Finland and Estonia; 

3. The research on the dependence of emissions on the movement of the grate 

showed the directions for the reduction of emissions by optimizing the grate 

movement and fuel supply systems. 

Defensive propositions of the dissertation: 

1. Fluctuations in the concentrations of NO, NO2, SO2, SO3, H2S, O2, CO, and KD 

are caused by the effect of grate movement on the fuel bed in the pyrolysis zone. The 

content of S and N in the biomass determines the levels of concentrations and the 

amplitudes of their fluctuations; 

2. During selective non-catalytic reactions, the (NH2)2CO reagent reduces not only 

the concentrations of NO and NO2, but also those of SO2 and H2S in biofuel 

combustion products. In the case of combustion with CO generation, low NOx 

concentrations are achieved. Supplemental urea supply has little effect on NOx; 

3. Recirculation of combustion products together with primary air reduces the 

concentrations of NO, NO2, NH3, SO3, and H2S, but increases the concentrations of 

SO2, HCN, and N2O. The intensity of these changes depends on the completeness of 

fuel combustion, i.e. on the concentration of CO in the combustion products; 

4. The influence of oxygen on N and S gaseous compounds is lesser than that of 

partial combustion in the case of CO generation. The effect of incomplete combustion 

on the concentrations of NOx and SO2 is the opposite; 

5. The formation of SO2, SO3, and H2S takes place mainly in the combustion zone 

of biofuel pyrolysis gaseous products and the effect of CaO on the reduction of 

emissions of these sulfur compounds must be directed to this zone. 
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METHODOLOGY 

The research was carried out in stands and boilers of various capacities and 

constructions. The composition of emissions during fuel combustion and the 

concentration of pollutants depends on fuel properties, combustion temperature, and 

the technological characteristics of the furnace, therefore this study performed 

measurements in different industrial boilers and combustion stands. Measurements of 

industrial emissions were performed in 4 MW, 5 MW, 8 MW, 10 MW and 12 MW 

biofuel boilers. These boilers differ in the size of the furnace and the arrangement of 

air and flue gas recirculation in the furnace. The 4 MW boiler is equipped with a 

secondary air supply above the fuel layer, while the 5 MW, 8 MW, 10 MW, and 

12 MW are furnaces with flue gas recirculation. 

A total of three experimental stands were used for research: 1) a domestic wood 

pellet boiler KSM-175-13-U (manufacturer Kalvis) 2) an experimental stand of 

combustion research laboratory at Kaunas University of Technology (KTU) 3) an 

experimental stand of Enerstena’s R&D laboratory. Experimental stands are 

characterized by combustion conditions typical of industrial boilers, i.e., combustion 

on a movable grate, high temperatures, etc. The KTU boiler-stand has a combustion 

chamber simulating an industrial boiler furnace but the path of combustion products 

at high temperatures is not long, combustion products remain in this part only for up 

to 0.4 s. As a result, another stand at the Enerstena Research Center was designed and 

manufactured. The high-temperature section integrated in the stand is a reactor to 

which various reagents for reducing emissions can be supplied. The reactor allows the 

adiabatic conditions required for selective non-catalytic reactions to be maintained for 

a sufficiently long time (4.8 s). The openings in the reactor and the furnace are 

designed for measuring the composition of combustion products and for supplying 

air, recirculated flue gas, or reagents to different places of the furnace.  

Experimental stands have all the technological elements to create the 

combustion conditions typical of industrial mobile grate boilers, i.e., a two-stage 

combustion chamber with a temperature of 750°C to 1100°C, separately controlled 

primary and secondary air flows, maintained stable pressure in the furnace, as well as 

adjustable grate motion speed and fuel supply. The efficiency of fuel supply, grate 

movement, and traction fans are controlled by frequency converters. The atmosphere 

pressure in the furnace is controlled automatically and does not depend on the amount 

of air and flue gas recirculation supplied to the combustion chamber. This makes it 

possible to eliminate the influence of air intake on the combustion product on the 

composition of combustion products under different combustion modes. The 

schematic diagram of both stands is shown in Figure 1.1. 
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Fig. 1.1. The functional scheme of experimental stand: 1–primary combustion 
zone, 2–secondary combustion zone, 3–chamotte arc, 4–water heating boiler, 

5–pellet bunker, 6–pellet feeding screw conveyor, 7–moving grate, 8–
combustion air fan, 9–flue gas recirculation (FGR) fan, 10–primary air/flue gas 
mixing valve, 11–primary airflow control valve, 12–secondary airflow control 

valve, 13–primary air inlet, 14–secondary air inlet, 15–primary combustion 
zone temperature measurement, 16–secondary combustion zone temperature 

measurement 

Industrial boilers are equipped with a vault at the beginning of the furnace where 

the fuel is supplied due to wet fuel combustion. This allows the reverse course of the 

flame to be maintained, helping to dry the fuel used in industrial boilers. Conversely, 

in experimental stands, due to relatively dry fuel, the vault is mounted at the end of 

the furnace. 

A small portion of the experiment was performed in the domestic boiler KSM-

175-13-U. The boiler was selected to study the concentrations of pollutants in the 

combustion of various types of biofuels in low-temperature, water-cooled furnaces 

and to investigate the possible applications of these emission reduction measures. 

Fuels 

Fuels of different origins were used in the experimental research: agricultural, 

furniture manufacturing, animal waste, and wood biomass. These fuels have different 

chemical compositions and combustion properties. The use of different fuels allows 

to assess the dependence of emissions on fuel composition and to identify clearer 

trends. The physical and chemical characteristics of the fuels are given in Table 1.1. 
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Table 1.1. Typical characteristics of wood pellets  

Characteristic 

 

Moisture 

content, % 

Ash 

content, % 

Lower calorific 

value, MJ / kg 

N, % S, % 

Wood pellets 7.0 0.2 16.4 0.15 0.01 

 

Wood chips 48.5 2.9 8.3 0.41 0.01 

Furniture 

manufacturer pr. 

waste pellets 

4.0 0.4 18.2 3.14 0.01 

 

Sunflower hull 

pellets 

8.6 2.9 16.0 0.51 0.08 

 

Peat pellets 8.2 3.0 18.6 1.13 0.04 

 

Oat hull pellets 11.4 3.4 15.3 1.13 0.15 

 

Bone meal 2.8 22.1 17.1 9.68 0.59 

 

 

Wood pellets and wood chips were selected as the cleanest biomass species 

containing the least quantities N and S. Wood pellets were used in experimental stands 

to set base emission values for comparison with other biomass species. Furniture 

production waste pellets made from particle board waste have high nitrogen contents, 

therefore, due to the generated high NOx values, they were used to investigate the 

feasibility of NOx reduction measures. 

Sunflower husk pellets and peat pellets have been used in studies on higher S 

levels to investigate the effectiveness of sulfur emission reduction measures. 

Chemical composition studies show that oat husks contain higher amounts of 

nitrogen, sulfur, potassium, and phosphorus. Potassium and phosphorus lower the ash 

softening temperature, while nitrogen and sulfur increase the concentrations of NOx 

and SO2 in the flue gas. Meat bone meal has a high calorific value and is rich in natural 

amounts of sulfur and nitrogen in the amino acids, which are the main source of NOx 

and SO2 emissions during combustion. 

Measuring instruments 

During the experimental studies, emissions were measured with four analyzers 

operating on different measurement principles. The concentrations of gaseous 

combustion products were measured with the Gasmet DX4000, MRU Vario luxx, and 

Siemens Ultramat 23 analyzers, and particulate matter concentrations were measured 

with the Afriso STM 225. The Gasmet DX4000 analyzer operates on the Fourier 

Transform Infrared Spectrometer (FTIR) principle. The MRU Copper luxx analyzer 

measures electrochemical cells. The continuously operating Siemens Ultramat 23 

analyzer measures the composition of flue gas with a non-dispersive infrared (NDIR) 

element. In the particulate matter analyzer, the concentrations are evaluated with an 

optical device that operates on the scattered light measurement principle. All of these 
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analyzers are equipped with heated hoses, probes and flue gas preparation units. The 

exception is the Afriso STM 225 analyzer as it does not have a flue gas preparation 

unit. 

Optical measuring instruments were used to monitor the processes in the 

furnace. Spectral characteristics of biofuel flame emissions were measured with the 

200–1100 nm Ocean Optics Jaz and 200–900 nm Ocean Optics Flame spectrometers. 

The frequency of flame luminosity fluctuations was measured with visual and infrared 

sensors OPT101 by recording signal changes with the microcontroller NUCLEO-

F746ZG. Temperatures in the overhead and final combustion zones were registered 

with K-type thermocouples by recording readings with the PicoLogo TC-08 recorder. 

Processing and analysis of results 

The results of the measurements are given for dry flue gas, converted to a 

concentration of 6% O2. Studies have shown that periodic fluctuations in the 

combustion product concentration occur, so a special measurement data processing 

methodology was developed in which the obtained results were sorted according to 

O2 or CO concentrations and the data are averaged. Therefore, the data in the figures 

are averages of tens or hundreds of measurement results. This technique allowed the 

detection of even small changes in flue gas composition smaller than the amplitudes 

of concentration fluctuations. 

For the experiments with flue gas recirculation, a calculation methodology has 

been developed, which allows to estimate what part of the boiler flue gas is returned 

back to the furnace. By adjusting the proportions of boiler flue gas and combustion 

air, the amount of flue gas recirculation was controlled by the oxygen concentration 

in the mixture. Flue gas recirculation ranges from 0% to 52%. 

 

Generalization of the experiments 

A summary of boilers, name abbreviations, fuels and used emission reduction 

measures is presented in Table 1.2. 
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Table 1.2. A summary of boilers, measurements and used methods 

Boiler 
Abbre-

viation 
Power  Fuel* 

Measurements Methods of emission reduction 

Optical Spectral Tempe

-rature 

Emissions Excess 

air 

Flue gas 

recircu-

lation 

NH3 (NH2)2CO CaO 

Experimental 

stand of Kaunas 

University of 

Technology   

KTU

-TS 

20 

kW 

W.P., 

M.B.M., 

F.P.W., 

S.H.P., 

P.P., 

O.H.P. 

                 

Experimental 

stand of 

Enerstena R&D 

laboratory 

EN-

TS 

20 

kW 

W.P., 

S.H.P. 
               

Domestic wood 

pellets boiler of 

KUT 

KTU

-BK 

13 

kW 

F.P.W. 

           

Industrial boiler 

(4 MW) 

PK-4 4 

MW 

W.C. 
            

Industrial boiler 

(5 MW) 

PK-5 5 

MW 

W.C. 
            

Industrial boiler 

(8 MW) 

PK-8 8 

MW 

W.C. 
            

Industrial boiler 

(10 MW) 

PK-

10 

10 

MW 

W.C. 
            

Industrial boiler 

(12 MW) 

PK-

12 

12 

MW 

W.C. 
           

*W.P.–Wood pellets; M.B.M.–Meat bone meal; F.P.W.–Furniture production wastes; S.H.P.–Sunflower hull pellets; P.P.–Peat 

pellets; O.H.P.–Oat hull pellets; W.C.–Wood chips.
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RESULTS 

Investigations of the causes of fluctuations in the composition of combustion 

products 

The author has conducted research in industrial 4 MW and 8 MW boilers and a 

20 kW experimental stand, the results of which have been published in an 

international peer-reviewed journal. Emission measurements in an industrial 8 MW 

boiler have shown that pollutant concentrations are highly unstable over time, even 

when the boiler operates in constant power output. Fluctuations in concentrations 

make it difficult to accurately dose selective reagents, as their amount must depend 

on the NOx concentration. Moreover, these fluctuations in emissions may lead to 

misinterpretation of the data. For this reason, studies have been conducted in an 

experimental stand to determine the causes of these fluctuations. 

Fluctuations in O2, CO, NO, NO2, NOx, SO2, H2S, and particulate matter 

concentrations measured during heating of wood and sunflower pellets were 

correlated with the grate movement periodicity of 20 seconds. The results of 

measurements of sunflower husk combustion emissions (Fig. 1.2) showed that fuels 

containing more nitrogen and sulfur increase both the averages of emissions and the 

amplitudes of fluctuations, highlighting the fluctuations of emissions. The 

concentrations of NO increased by 125 mg/m3, NO2 increased by 2 mg/m3 and NOx 

by 193 mg/m3 compared to wood pellet emissions. The concentrations of sulfur 

compounds also increased: SO2 by 62 mg/m3 and H2S by 16 mg/m3. 

 

Fig. 1.2. Fluctuations of Kaunas University of Technology experimental stand flue 

gas emissions during combustion of sunflower hull pellets 

Particulate emissions (KD) also showed clear periodic fluctuations, especially 

between 16:35 and 16:37. Particulate matter concentrations ranged from 221 mg/m3 

to 379 mg/m3 with an average of 283 mg/m3. The periodicity of the particulate 

concentrations coincided with the concentrations of the gaseous compounds and was 

20 seconds. The same period was determined by measuring the changes in the 
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intensity and temperature of the flame glow above the fuel layer. In cooperation with 

the Institute of Metrology of Kaunas University of Technology, an optical device for 

recording light signal pulsations (fluctuations) was developed, which was used to scan 

the frequencies of flame fluctuations in the experimental stand of KTU. 

Measurements of flame glow pulsations were performed at a distance of 100 mm 

above the fuel layer. The spectrogram data show that the intensity of the light signals 

recorded at the beginning and end of the grate is very low. The most pronounced 

periodically recurring flame glow is seen in the middle of the grate, where volatile 

substances burn in the flame. The periodicity of the measured signals coincided with 

the previously performed periodicity of emission fluctuations and the period of grate 

movement, i.e., full forward/reverse cycle of the grate. 

Temperature measurements along the grate in UAB Enerstena’s experimental 

stand were performed, linking them with changes in O2, CO, NO, NO2, SO2, and H2S 

emissions in the boiler flue gas. K-type thermocouples without a protective cover for 

fast temperature measurement were used for the measurements. Thermocouples are 

arranged at equal (100 mm) distance from the beginning to the end of the grate. They 

are installed at a distance of 30 mm from the furnace wall and retracted at the same 

distance above the fuel layer. The observed average temperature fluctuation averaged 

by 14°C. Determined periodicity is evidently related to the movement of the grate. 

This period clearly coincided with fluctuations in the concentrations of O2, NO, and 

SO2 emissions measured at the same time. 

In order to determine whether the same regularities of emission fluctuations can 

be detected in industrial furnaces, research was performed in a 4 MW boiler. During 

the study, O2 and NOx emission concentrations were measured by recording the 

movement of the grate. NOx and O2 concentrations were found to be dependent on 

the movement of the grate (Fig. 1.3). 

 

Fig. 1.3. The dependence of flue gas emissions on grate movement in a 4 MW 

power boiler during combustion of wood chips 
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The periodicity of changes in NOx concentrations accurately replicates the 

frequency of grate movement. The average NOx emissions were 266 mg/m3, with 

changes in concentrations ranging from 10 to 15 mg/m3. The periodicity of changes 

in oxygen concentrations was in line with NOx trends and also depended on grate 

movement. The mean O2 concentration was 6.2% with a change of approximately 

0.6%. 

The effect of grate movement on O2, CO, and NOx emissions can be observed 

in several publications [71–75]. Zhang et al. [71] performed measurements and 

simulations of district heating 320 kW wood chip boiler emissions, which showed that 

the levels of O2, CO2, and CO concentrations fluctuate particularly over an hour. 

Emission instabilities have also been observed by Sippula et al. [72]. Fluctuations in 

emission concentrations in the 500 kW pellet boiler were clearly visible when burning 

lower quality fuel, i.e., bark. The nature of emission fluctuations has also been 

observed by Leskinen et al. [73]. These authors attribute the instabilities of oxygen 

and partial combustion product emissions to the mechanical effects of fuel supply and 

grate movement, but do not explain the process.  

The reasons for these fluctuations can be explained by two mechanisms. First of 

all, the movement of the grate causes intensive gasification, which releases large 

amounts of incomplete combustion products [72]. Glarborg et al. [10] found that the 

formed NO, exposed to hydrocarbon radicals, can be reduced to CHN or N2 due to a 

surface reaction on carbon or soot surfaces. Another reason is related to the uneven 

covering of the primary air supply slots in the grate. As the grate moves, some of the 

fuel is pushed away from the air vents in the grate, thus distorting the local excess air 

[75]. These openings also contribute to particulate concentrations. Particulate matter 

is formed in the combustible fuel layer by reacting Cl, and S with Al, Si, K, Na, Ca, 

Mg, Fe, P, and Ti elements to form aerosols and fly ash. As the grate moves, the 

burning fuel layer is mechanically destroyed. Particulates are separated from the 

primary air in the fuel bed and further taken out with the combustion products. 

The performed studies allowed to understand the reasons for the fluctuations in 

the composition of combustion products and these processes were taken into account 

while processing the data of experimental studies. 

Combined influence of liquid reagents and CO on flue gas composition 

Previous studies of selective non-catalytic measures while burning waste from 

the furniture manufacturing industry have shown that NOx emissions can be reduced 

by up to 68%, but no other emissions have been investigated during these experiments. 

For this reason, more detailed tests were performed on an experimental stand to 

determine the effect of a 32.5% urea (NH2)2CO solution on the concentrations of CO, 

SO2, H2S, NOx, NO, and NO2. Sunflower hull pellets were burned during the study. 

Urea content is given as a recalculated percentage of fuel mass (% f.m). The results 

of the measurements are shown in Figure 1.4. 
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Fig. 1.4. The dependence of flue gas emissions on urea quantity in Enerstena’s 

experimental stand during combustion of sunflower hull pellets 

By injecting 1.08% urea from fuel mass into the reactor, NOx concentrations 

decreased from 272 mg/m3 to 116 mg/m3, the NO concentration decreased from 

175 mg/m3 to 76 mg/m3, and the NO2 concentration decreased from 4.2 mg/m3 to 

0 mg/m3. The SO2 concentration decreased from 31 mg/m3 to 25 mg/m3 and the H2S 

concentration decreased from 31 mg/m3 to 2.5 mg/m3. Increasing the reagent level to 

2.2% increases the changes in emissions, and the NO2 and H2S concentrations 

disappear. Further comparison of different concentrations of urea solutions shows that 

a higher concentration of the solution leads to a higher reduction efficiency of nitrogen 

and sulfur compounds. 

The effect of increasing the CO concentration is observed during the supply of 

urea solution. The supply of 1.08% urea by weight of fuel increased CO from 0 mg/m3 

to 16 mg/m3. An increase in CO concentration was also observed in an industrial 

4 MW boiler equipped with a selective non-catalytic NOx reduction system (Fig. 1.5). 

 

Fig. 1.5. The dependence of flue gas emissions of a 4 MW industrial boiler and the 

supply of urea during combustion of wood chips  
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Stable oxygen concentrations in the flue gas indicate that the concentration of 

carbon monoxide is not caused by a lack of air. An increase in CO concentrations 

from 0 mg/m3 to an average of 170 mg/m3 correlates with the amount of urea supplied. 

The higher its content, the higher concentrations of CO can be expected. In the 

presence of excess reagent, incomplete decomposition reactions of urea occur and CO 

is partially formed instead of CO2. Excess reagent also determines the concentration 

of NH3 in the flue gas. Studies in a 5 MW industrial boiler have also shown that the 

concentration of NH3 in the flue gas depends on both the amount of reagent and the 

concentration of the solution (Fig. 1.6). 

 

Fig. 1.6. The dependence of flue gas emissions of a 5 MW industrial boiler on the 

supply of the urea and its dilution during combustion of wood chips  

Solutions of five different concentrations were supplied during the experiment. 

The proportion of urea in a diluted and undiluted solution was kept equivalent, only 

the part of water changed. The results show that with excess supply of the undiluted 

solution, when the reagent content reached 6.0 kg/h, the NH3 concentration in the flue 

gas increased from 1 mg/m3 to 3 mg/m3. Meanwhile, a maximum NH3 concentration 

of 15 mg/m3 was reached at the maximum dilution of the reagent when urea quantity 

reached 1.1 kg/h. This difference can be explained by the local decrease in 

temperature due to the influence of water and the size of the droplets. The higher the 

water content in the solution, the longer it takes for the water content to evaporate. 

Just after this process pure (NH2)2CO can decompose into NH3 and HCN. The 

optimum temperature is required to accelerate evaporation.  

The optimum temperature in the final combustion zone for effective selective 

non-catalytic reactions was determined in a 10 MW industrial boiler (Fig. 1.7). During 

the experiments, different reagents, urea and ammonia solutions were supplied at the 

beginning of minute 4 and supplied for 5 minutes at temperatures between 950°C and 

1100°C. 
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Fig. 1.7. The dependence of flue gas emissions of the10 MW industrial boiler on the 

temperature at the injection site and the type of solution during combustion of wood 

chips. Noted solutions were injected at minutes 4–9 of the experiment  

The obtained results show that the efficiency of selective non-catalytic reactions 

depends on both the reaction temperature and the type of reagent. The highest NOx 

reduction efficiency was achieved at a flue gas temperature of 1050°C. The optimum 

temperature did not depend on the type of reagent. At lower temperatures, the rate of 

selective reactions slows down, and at too high temperatures the NH3 and (NH2)2CO 

reagents begin to dissociate into atomic nitrogen, which is oxidized to NO at high 

temperatures. 

Experimental research described above were used to develop a unique selective 

nitrogen oxide emission reduction system implemented in industrial medium power 

biofuel boilers. 

Concentrations of incomplete combustion products and other compounds are 

directly dependent on excess oxygen. Most authors’ publications simply examine the 

influence of oxygen on nitrogen oxide emissions, which is why more detailed studies 

have been carried out to measure the change in sulfur and nitrogen gas compounds 

due to excess air. Biomass and waste of various origins were selected for research: 

1) biomass of plant origin, i.e., wood pellets; 

2) biomass of animal origin, i.e., meat bone meal; 

3) agro-waste biomass i.e., sunflower hull pellets; 

4) industrial furniture production waste, i.e., laminated chipboard. 

All fuels were burned in an experimental stand. During the studies, the amount 

of secondary air gradually changed, thus reducing the oxygen concentration in the flue 

gas (Fig. 1.8). 



 18 

 

Fig. 1.8. The dependence of flue gas emissions of Kaunas University of Technology 

experimental stand (a, b, c) and domestic boiler (d) on O2 concentration in flue gas  

When burning wood pellets (Fig. 1.8 a) with sufficient excess of O2, the 

concentrations of NOx and SO2 were the lowest compared to other fuels and amounted 

to 360 mg/m3 and 0 mg/m3, respectively. Reducing the oxygen concentration in the 

flue gas from 11% to 6% increased the concentrations of CO (from 250 mg/m3 to 

3200 mg/m3) and SO2 (from 0 mg/m3 to 75 mg/m3). The concentrations of NOx and 

SO3 demonstrate the opposite dependence on O2. NOx decreased from 360 mg/m3 to 

160 mg/m3 and SO3 from 25 mg/m3 to 5 mg/m3. When burning bone meal (Fig. 1.8 

b), CO emissions were much lower. Similar (2500 mg/m3) CO emissions were 

achieved at an O2 concentration of 2.2%. SO2 emissions, meanwhile, increased 

slightly from an average of 1050 mg/m3 to 1080 mg/m3. High SO2 concentrations were 

due to high (< 1.0%) sulfur content in the fuel. Reducing O2 concentrations from 7.2% 

to 2.2% reduced NOx emissions from 800 mg/m3 to 300 mg/m3. Although the 

calculated SO2 concentrations were expected to be around 1600 mg/m3, a large part 

of the sulfur remained bound in the ash in the form of sulphates, due to the specific 

composition of bone meal. The combustion of sunflower husk pellets (Fig. 1.8 c) and 

reduction of excess air increased the CO concentration from 500 mg/m3 to 

4300 mg/m3, SO2 increased from 100 mg/m3 to 200 mg/m3. NOx concentrations 

decreased from 500 mg/m3 to 300 mg/m3 and SO3 slightly decreased from 10 mg/m3 

to 7 mg/m3. Chipboard NOx emissions (Fig. 1.8 d) were three times higher compared 

to wood pellets. Reducing O2 from 9.5% to 3.2% reduced NOx emissions from 

1000 mg/m3 to 300 mg/m3 and SO3 from 10 mg/m3 to 0 mg/m3. When CO emissions 

increased from 70 mg/m3 to 5200 mg/m3 and SO2 increased from 20 to 130 mg/m3. 
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The influence of excess air O2 concentration on chipboards, painted wood fiber 

board, and plywood combustion emissions were also determined in the experimental 

stand. Emissions of plywood were compared with the measurements made in a 

domestic wood pellets boiler. The domestic boiler is dominated by cold, water-cooled 

surfaces and a single-stage air supply, so even with a large excess of air, the measured 

CO emissions were 35–40 times higher than those of the experimental stand.  

For a comparison of emissions, additional studies of the influence of excess air 

were performed in 5 MW and 12 MW industrial boilers (Fig. 1.9). 

 

Fig. 1.9. The dependence of flue gas emissions of 5 MW (a) and 12 MW (b) 

industrial boilers on O2 concentration in flue gas during the combustion of wood 

chips 

The measurements of CO, NOx and H2S emissions in the industrial boiler show 

the same trends compared to experimental stand. At the same 5% O2 concentration, 

the NOx concentration in the 5 MW boiler (Fig. 1.9 a) was 210 mg/m3 and in the 

12 MW (Fig. 1.9 b) it was 155 mg/m3. This difference in NOx emissions occur due to 

different fuel quality and combustion conditions. 

In the experimental stand, research was performed by combining means of 

reducing excess air and selective reagent supply by burning sunflower hull pellets. By 

setting baseline emission values, excess air was gradually reduced by generating CO 

concentrations of 100–500 mg/m3 and 1000–2000 mg/m3. After exposure to CO, the 

studies were repeated with an additional supply of 32.5% urea solution. The amount 

of urea solution (0.65% by weight of fuel) was selected on the basis of previous tests 

when the NH3 concentrations were minimal. The results are shown in Figure 1.10. 
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Fig. 1.10. The dependence of Enerstena’s experimental stand flue gas emissions on 

the combination of reduction measures during the combustion of sunflower hull 

pellets 

Baseline NOx values (without any measures) were 356 mg/m3. By maintaining 

CO concentrations between 1000 mg/m3 and 2000 mg/m3, NOx and NO 

concentrations decreased to 133 mg/m3 and 65 mg/m3, respectively. The 

concentrations of NO2, NH3, HCN, and H2S did not exceed 5 mg/m3. Baseline SO2 

concentrations were 196 mg/m3. At CO levels of 1000–2000 mg/m3, SO2 emissions 

increased to 682 mg/m3. SO3 was unstable and ranged from 5 mg/m3 to 27 mg/m3. 

The combination of urea and excess air measures resulted in more pronounced 

differences in results. With the supply of (NH2)2CO and maintaining the same level 

of CO, the NOx values were 124 mg/m3. The concentrations of NO decreased to 

61 mg/m3 compared to baseline emissions. NO2, N2O, NH3, HCN, and H2S increased 

slightly but did not exceed 7 mg/m3. At the same time, SO2 concentrations increased 

to 664 mg/m3 and SO3 concentrations increased to 84 mg/m3. Particulate matter (PM) 

measurements show that concentrations are independent of urea supply. PM 

concentrations increased from 184 mg/m3 to 233 mg/m3 both with excess air reduction 

and in combination with urea supply. 

The significant increase in SO2 concentrations can be explained by the influence 

of CO. During combustion, the Ca and S elements in the fuel react with each other to 

form calcium sulfate, which settles on the surfaces of the furnace, boiler, and 

subsequent flue gas tract installations. Lupiáñez et al. [40] performed experiments 

investigating SO2 emissions under fluidized bed combustion conditions and found that 

at temperatures above 850°C, carbon monoxide can induce the release of SO2 from 

CaSO4. CO reacts with CaSO4-containing fly ash and furnace and boiler deposits to 

release CaO, CO and SO2. 

Combined influence of flue gas recirculation and CO 

Typically, flue gas recirculation in boilers is used to reduce the temperature in 

the furnace, thus avoiding the formation of “thermal NOx”. The combustion of 

relatively high humidity and low calorific biofuels does not produce “thermal NOx”, 
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so all NOx emissions are “fuel NO”. The formation of NOx in the fuel has little effect 

on temperature, but the concentrations of NOx have been observed to decrease with 

the supply of recirculated flue gas with primary air. More detailed studies of the 

influence of combined primary measures – flue gas recirculation and excess air on 

nitrogen and sulfur gaseous compounds have been carried out by the author of the 

dissertation in an international peer-reviewed journal [89].  

During the research, temperature and emissions measurement were investigated. 

It was determined that the flame temperature above the grate can be reduced from 

890°C to 750°C by applying 50% flue gas recirculation. In the secondary combustion 

zone, the temperature remains practically constant at 980°C. Emissions were 

determined by creating different flue gas recirculation ratio and combustion quality. 

The flue gas recirculation was gradually increased and the excess air was reduced, 

thus creating different CO concentration levels: up to 200 mg/m3 (Fig. 1.11 a); from 

300 mg/m3 to 500 mg/m3 (Fig. 1.11 b); from 1000 to 1500 mg/m3 (Fig. 1.11 c); from 

2000 to 2500 mg/m3 (Fig. 1.11 a).  

 

Fig. 1.11. The dependence of the Kaunas University of Technology experimental 

stand flue gas nitrogen compounds emissions on the combination of flue gas 

recirculation with primary air and carbon monoxide during combustion of sunflower 

hull pellets 

Maximum NO concentrations, i.e., 340 mg/m3 measured at maximum excess air 

with CO < 200 mg/m3 with flue gas recirculation switched off. By reducing excess 

air, NO concentrations decreased to 250 mg/m3, and by increasing flue gas 

recirculation, NO concentrations decreased by 50–80 mg/m3. NO2 and NH3 showed 

similar trends but their concentrations did not exceed 4 mg/m3. The concentrations of 
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HCN showed opposite trends. Their lowest concentrations did not depend on excess 

air and in all cases ranged from 100 mg/m3 to 120 mg/m3, but the highest 

concentrations depended on both CO and flue gas recirculation and amounted to 

350 mg/m3. 

The influence on sulfur gas was also investigated (Fig. 1.12 a, b, c, d). The 

measurements of SO2 emissions have shown that concentrations increase from both 

flue gas recirculation and CO levels. The lowest SO2 concentration was measured at 

the lowest CO concentration and the flue gas recirculation switched off and was 

60 mg/m3. These trends are reversed compared to NOx. Increasing CO concentrations 

to 1000–2000 mg/m3 increased SO2 emissions to 150 mg/m3. Flue gas recirculation 

increases SO2 emissions by 60–120 mg/m3. SO3 and H2S emissions showed opposite 

trends. SO3 concentrations were practically stable at 10 mg/m3, only in the case of 

partial combustion did the additional supply of flue gas recirculation reduce the 

concentrations by 5 mg/m3. The concentrations of H2S gradually decreased with 

increasing CO emissions and increasing flue gas recirculation. Particularly high 

instability of H2S values is observed in the absence of air, when CO was between 

2000 mg/m3 and 2500 mg/m3. 

 

Fig. 1.12. The dependence of the Kaunas University of Technology experimental 

stand flue gas sulfur compounds emissions on the combination of flue gas 

recirculation with primary air and carbon monoxide during combustion of sunflower 

hull pellets 

Based on the sulfur content of the sunflower hull pellets (Table 1.1), the 

theoretical maximum SO2 concentration could have reached approximately 

270 mg/m3 at full S conversion to SO2, but measurements show that much lower SO2 

concentrations are formed under real combustion conditions. Flame spectrum 
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measurements on the experimental stand and an 8 MW industrial boiler were 

characterized by clear spectral peaks at 589 nm and 769 nm, which correspond to the 

wavelengths of Na and K ions. This indicates that salt formation occurs in the flame 

above the fuel layer. The supply of flue gas recirculation reduces the activity of Na 

and K as the flame temperature decreases, which reduces the formation of K2SO4 and 

Na2SO4 salts. The analysis of the elemental composition of the ash from the furnace, 

the furnace walls, the boiler surfaces, and the ash of the cyclones confirms this – a 

part of the sulfur is present in the particulate matter. For this reason, flue gas 

recirculation affects the SO2 concentrations. 

The reduction in NOx concentrations through flue gas recirculation can be 

explained by several mechanisms. Liu et al. [93] summarized three NOx reduction 

mechanisms: 1) flue gas recirculation has a positive effect on reducing NOx 

concentrations by lowering the combustion temperature by diluting the flue gas with 

inert gas, but this measure is more suitable for reducing thermal NOx; 2) flue gas 

recirculation reduces the partial pressure of oxygen and the rate of reactions during 

combustion due to lower temperature and reduced concentration of reactive 

components; 3) flue gas recirculation causes combustion instabilities, which reduces 

fast NOx concentrations. Yin et al. [41] also found a positive effect of flue gas 

recirculation on reducing NOx concentrations. Internal flue gas recirculation forms 

vortex zones. Due to the increased path and residence time of combustion products, 

the oxidation conditions of CO and volatile substances improve. Intensive NOx and 

CO conversion takes place in these vortex zones. At the same time, flue gas 

recirculation reduces the temperature of combustion products and the likelihood of 

thermal NOx formation. 

Combined influence of CO, flue gas recirculation and solid reagents on flue gas 

composition 

Calcium compounds are most commonly used for flue gas desulfurization in 

industrial boilers. They are usually injected into a low-temperature (below 200°C) 

flue gas stream, but the influence of these calcium reagents on other compounds, e.g., 

nitrogen for gaseous compounds has not been sufficiently studied and is not clear. 

Reagents of CaO, CaOH, CaCO3, NaHCO₃, and kaolin (H2Al2O8Si2.H2O) were tested 

during the experiments. The effect on SO2 was shown only by calcium compounds, 

of which CaO had the best effect. Therefore, in the experimental stand, studies were 

performed to determine the total effect of calcium oxide on the emissions of sulfur 

and nitrogen compounds. When burning sunflower hull pellets, CaO was injected into 

separate furnace locations: above the fuel layer and into the final combustion zone. 

The optimal CaO content, i.e., 5.4% by mass of fuel selected on the basis of the results 

of the original tests. The supply of CaO above the fuel bed and to the final combustion 

zone had virtually the same effect on NOx and NO concentrations, reducing NOx 

from 194 mg/m3 to an average of 141 mg/m3 and NO from 95 mg/m3 to 69 mg/m3. 

The NOx reduction effect may have been due to the increase in CO emissions caused 
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by the cooling of the furnace due to the pneumatic injection of CaO. Irrespective of 

the CaO injection site, a slight reduction in NH3, HCN, and SO3 and an increase in 

NO2 emissions were measured, although in all cases the concentrations did not exceed 

10 mg/m3. 

Studies have been carried out in an experimental stand to determine whether the 

CaO content in the fuel itself affects the flue gas composition. Studies were performed 

with sunflower hull pellets: without the addition of CaO, with the addition of 0.5% 

CaO, and with the addition of 1.0% CaO. The emission results are shown in Figure 

1.13. It is observed that SO2 concentrations are related to CO emissions, therefore a 

more detailed analysis was performed to determine the impact of combined excess air 

and flue gas recirculation measures on NOx and SO2 emissions when burning 

sunflower hull pellets with 0%, 0.5% and 1.0% CaO. Excess air was adjusted to 

maintain different CO concentrations: up to 100 mg/m3; between 100 mg/m3 and 

200 mg/m3; above 200 mg/m3.  

 

Fig. 1.13. The dependence of Enerstena’s experimental stand flue gas emissions on 

the combination of flue gas recirculation with primary air, carbon monoxide 

concentrations, and CaO quantity during the combustion of sunflower hull pellets 

When burning sunflower hull pellets without flue gas recirculation and CaO 

additive, the measured maximum NOx emission concentration was 100 mg/m3. The 

lowest NOx concentrations were achieved with flue gas recirculation of Rk – 49% 

and CaO content of 1% in the fuel. The insignificant decrease in mean NOx 

concentrations may have been due to the inhibitory effect of CaO on combustion and 

the decrease in flame temperature. It is determined that SO2 concentrations are 
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unrelated to the amount of CaO in the fuel. SO2 increased from 38 mg/m3 to 65 mg/m3 

depending only on the flue gas recirculation. In most cases, CO emissions also 

increased as a result of flue gas recirculation, but at a CaO content of 1% in the fuel, 

this dependence is not clearly expressed. Particulate matter (PM) concentrations 

remained stable in almost all cases and were independent of CaO content in the fuel 

or flue gas recirculation. Measurements of PM and SO2 concentrations show that 

sulfur conversion takes place only in the gas phase. i.e., above the fuel layer. PM 

measurements showed that the lime remained in the fuel layer and therefore could not 

react with the sulfur. 

When burning fuel without flue gas recirculation, the difference in NOx, 

depending on CO levels, is up to 5 mg/m3. Increasing the amount of flue gas 

recirculation increases the NOx difference to 10 mg/m3. The difference in NOx 

concentrations at different CO levels is not as pronounced only when burning fuel 

with 1% CaO added in the fuel.  

Calculation methodologies to assess the effectiveness of NOx and SO2 reduction 

measures 

Based on the performed experimental studies, calculation methodologies were 

developed to estimate the effect of the studied emission reduction measures on the 

concentration of NOx and SO2 in the boiler flue gas. Measures on emissions cannot 

be arithmetically summarized, thus the presented methodology allows to calculate 

emissions according to NOx and SO2 reduction methods separately. These methods 

can be applied to reciprocating grate fires using solid biomass fuels with a nitrogen 

content of up to 0.51% and a sulfur content of up to 0.08%. 

The most typical graphs of emission reduction measures were used to develop 

the calculation methodology. Data of which were processed to determine the 

dependence of the emissions on the scope of the measure applied. 

 

NOx calculation method 

The calculation of NOx emissions by estimating the effect of partial combustion 

products (CO concentration): 

 𝑁𝑂𝑥(𝐶𝑂) = 𝑁𝑂𝑥𝑝.𝑟.(1.80 − 0.15 ln𝐶𝑂) (1.1) 

here:  

NOx(CO) – the concentration of the pollutant under the influence of partial 

combustion (CO) products (mg/m3); 

NOx(p.r.) – NOx concentrations without reduction measures (mg/m³); 

COk – carbon monoxide concentration in flue gas (mg/m3). 

 

Calculation of NOx(p.r.): 

 𝑁𝑂𝑥(𝑝.𝑟.) = 𝐾𝑁𝑂𝑥𝑁𝑂𝑥(𝑡𝑒𝑜𝑟.) (1.2) 
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here:  

KNOx – a factor estimating which part of the nitrogen in the fuel is converted to 

NOx. According Pleckaitiene et al. [15]: 0.07–1.0; 

NOx(teor.) – theoretical NOx values under complete nitrogen oxidation.   

 

The calculation of NOx emissions by estimating the effect of flue gas 

recirculation: 

 𝑁𝑂𝑥(𝑑.𝑟𝑒𝑐.) = 𝑁𝑂𝑥(𝑝.𝑟.)(1 − 0.00424𝑅𝑘) (1.3) 

here:  

NOx(d.rec.) – the concentration of the pollutant under the influence of flue gas 

recirculation (mg/m3); 

Rk – flue gas recirculation ratio (%). 

The calculation of NOx emissions by estimating the effect of (NH2)2CO in an 

experimental stand: 

 𝑁𝑂𝑥((𝑁𝐻2)2𝐶𝑂) =
𝑁𝑂𝑥(𝑝.𝑟.)

283
∙ 𝑒−0.191𝑢  (1.4) 

here:  

NOx((NH2)2CO) – the concentration of the pollutant under the influence of 

(NH2)2CO in an experimental stand (mg/m3); 

u – the quantity of (NH2)2CO (kg/MW). 

 

The calculation of NOx emissions by estimating the effect of (NH2)2CO in an 

industrial boiler: 

 𝑁𝑂𝑥′((𝑁𝐻2)2𝐶𝑂) = 𝑁𝑂𝑥(𝑝.𝑟.)(1 − 1.44𝑢 + 𝑢2 − 0.22𝑢3) (1.5) 

here:  

NOx‘((NH2)2CO) – the concentration of the pollutant under the influence of 

(NH2)2CO in an industrial boiler (mg/m3). 

 

SO2 calculation method 

The calculation of SO2 emissions by estimating the effect of partial combustion 

(CO concentration): 

 𝑆𝑂2(𝐶𝑂) = 𝑆𝑂2(𝑝.𝑟.)(0.6 ln 𝐶𝑂) − 2 (1.6) 
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here:  

SO2(CO) – the concentration of the pollutant under the influence of partial 

combustion (CO) products (mg/m3); 

SO2 (p.r.) – SO2 concentrations without reduction measures (mg/m³);  

CO – carbon monoxide concentration in flue gas (mg/m3). 

 

The calculation of NOx(p.r.): 

 𝑆𝑂2(𝑝.𝑟.) = 𝐾𝑆𝑂2𝑆𝑂2(𝑡𝑒𝑜𝑟.) (1.7) 

Kso2 – a factor estimating which part of the nitrogen in the fuel is converted to 

SO2. According to Roy et al. [25]: 0.57–0.65. 

SO2(teor.) – theoretical SO2 values under complete nitrogen oxidation.  

The calculation of SO2 emissions by estimating the effect of flue gas 

recirculation: 

 𝑆𝑂2(𝑑.𝑟𝑒𝑐.) = 𝑆𝑂2(𝑝.𝑟.)(0.0154𝑅𝑘) (1.8) 

here:  

SO2(d.rec.) – the concentration of the pollutant under the influence of flue gas 

recirculation (mg/m3); 

Rk – flue gas recirculation ratio (%). 

 

The calculation of SO2 emissions by estimating the effect of (NH2)2CO in an 

experimental stand: 

 𝑆𝑂2((𝑁𝐻2)2𝐶𝑂) =
𝑆𝑂2(𝑝.𝑟.)

30
∙ 𝑒−0.051𝑢  (1.9) 

here:  

SO2 ((NH2)2CO) – the concentration of the pollutant under the influence of 

(NH2)2CO in an experimental stand (mg/m3). 

The calculation of SO2 emissions to evaluate the effect of CaO above the fuel 

layer in an experimental stand: 

 𝑆𝑂2(𝐶𝑎𝑂) = 𝑆𝑂2(𝑝.𝑟.)(1 − 0.0062𝑤) (1.10) 

SO2(CaO) – the concentration of the pollutant under the influence of CaO above 

the fuel layer (mg/m3); 

w – CaO quantity (kg/MW). 
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The calculation of SO2 emissions to evaluate the effect of CaO at the final 

combustion zone: 

 𝑆𝑂2′(𝐶𝑎𝑂) = 𝑆𝑂2(𝑝.𝑟.)(1 − 0.01𝑤) (1.11) 

SO2‘(CaO) – the concentration of the pollutant under the influence of CaO at the 

final combustion zone (mg/m3). 
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CONCLUSIONS 

1. The cause of periodic fluctuations in the composition of combustion products 

is the reversal of the fuel layer and the opening of grate air slots in the main 

combustion zone, which is caused by the movement of grate in the biofuel furnaces. 

This changes the combustion regime of gaseous pyrolysis products. Fluctuations in 

the concentrations of nitrogen and sulfur compounds are influenced by the level of 

their concentrations, which depends on the nitrogen and sulfur content of the fuel; 

2. The injection of urea into biofuel combustion products at 950–1050°C 

reduces the concentrations of NO, NO2, SO2, and H2S. When 1% of urea from fuel 

mass is supplied, the reduction of concentrations differs for different compounds: NO 

– 57%, NO2 – 100%, SO2 – 19%, H2S – 90%. In industrial boilers, the NOx reduction 

is up to 67%. When combustion takes place with CO generation and low NOx 

concentrations are reached, the additional effects of urea supply have little effect. The 

urea supply also reduces the concentrations of SO2, therefore the combination of these 

measures makes it possible to reduce both emissions; 

3. Recirculation of combustion products together with primary air reduces the 

concentrations of NO, NO2, NH3, SO3 and H2S, but increases the concentrations of 

SO2, HCN and N2O. The intensity of these changes depends on the completeness of 

fuel combustion, i.e., on the concentration of CO in the combustion products. During 

the combustion of biofuels, when the flue gas recirculation ratio is 50% and CO = 

2000–2500 mg/m3, NOx concentrations can be reduced by 50%, but SO2 

concentrations quadruple and approach the maximum theoretical values. Flue gas 

recirculation and partial combustion mode cause an increase in SO2 concentration, so 

these methods must be combined with flue gas desulfurization measures; 

4. Experiments on moving grate stands, domestic and industrial boilers have 

shown that the dependence of emissions on the concentration of oxygen in the flue 

gas is similar and does not depend on the combustion plant or type of fuel. The nature 

of the change in nitrogen and sulfur concentrations indicates a greater dependence on 

CO than on O2 concentrations in flue gas; 

5. Mixing CaO with fuel does not affect the concentrations of SO2 and 

H2S. The supply of CaO into the final combustion zone is 10% more effective 

in reducing SO2 concentrations compared to the supply above the fuel bed. 

This indicates that the formation of SO2, SO3, and H2S takes place mainly in 

the combustion zone of gaseous products of biofuel pyrolysis. For these 

reasons, CaO must be supplied to this zone. 
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