Gintarė Stankūnienė “Assessment of energy related climate change mitigation measures in household” doctoral dissertation defense

Author, Institution: Gintarė Stankūnienė, Lithuanian Energy Institute

Dissertation title: Assessment of energy related climate change mitigation measures in household

Science area, field of science: Social Sciences, Economics, S004.

Defense of the dissertation: 2024-08-30, 10:00 a.m., Lithuanian Energy Institute, AK-202 auditorium, Breslaujos st. 3, Kaunas, Lithuania.

Scientific Supervisor: Prof. Dr. Dalia Štreimikienė (Lithuanian Energy Institute, Social Sciences, Economics, S004).

Dissertation Defense Board of Economics Science Field:

The doctoral dissertation is available online G. Stankūnienė el. dissertation (PDF) and at the library of Kaunas University of Technology (Gedimino st. 50, Kaunas) and at Lithuanian Energy Institute (Breslaujos st. 3, Kaunas).

Annotation
Households account for about 70% of all greenhouse gas emissions through energy use, but their potential contribution and position in climate policy is not well understood. One of the main challenges in the formulation of climate change mitigation policy is balancing the benefits of climate change mitigation with long-term and globally shared public goods such as energy efficiency and the use of renewable energy resources. Energy consumption and conservation, use of renewable energy resources and other climate change mitigating actions are related to consumer decision-making and behaviour. The promotion of these actions must be linked to the idea that reducing greenhouse gas emissions is beneficial to society. Determining the preferences of all stakeholders is also critical to creating the right initiatives. As a result, insights from behavioural economics can help shape politics by explaining how people evaluate options, make decisions, and change behaviour in the area of climate change mitigation. The main goal of the dissertation is to create a model for assessing the benefits of climate change mitigation measures in households and to determine the most appropriate measures. These measures and the methods for evaluating their benefits in the dissertation are analysed based on insights from behavioural economics. The created benefit assessment model was verified by conducting empirical research in Lithuania. This allowed for the identification of the most appropriate climate change mitigation measures in households, based on the preferences of all stakeholders, as well as the results of the assessment of external benefits and effectiveness, economic efficiency and efficacy.

Justė Jankevičienė “Assessment of wind energy resources potential in extensive urban environments under the changing climate” doctoral dissertation defense

Author, Institution: Justė Jankevičienė, Lithuanian Energy Institute

Dissertation title: Assessment of wind energy resources potential in extensive urban environments under the changing climate

Science area, field of science: Technological Sciences, Energetics and Power Engineering, T006.

Defense of the dissertation: 2024-08-27, 11:00 a.m., Lithuanian Energy Institute, AK-202 auditorium, Breslaujos st. 3, Kaunas, Lithuania.

Scientific Supervisor: Dr. Arvydas Kanapickas (Lithuanian Energy Institute, Technological Sciences, Energetics and Power Engineering, T006).

Dissertation Defense Board of Energetics and Power Engineering Science Field:

The doctoral dissertation is available online J. Jankevičienė el. dissertation (PDF) and at the library of Kaunas University of Technology (Gedimino st. 50, Kaunas) and at Lithuanian Energy Institute (Breslaujos st. 3, Kaunas).

Annotation
This research investigates the potential of wind energy in expansive urban environments, with a focus on the impacts of climate change. The research introduces an innovative method for calculating wind energy variations within such environments, providing a novel approach to understanding and predicting wind behavior in urban areas. The findings demonstrate that extensive urban development significantly reduces wind energy potential due to increased surface roughness and obstructive structures. Additionally, the study reveals that climate change exacerbates these negative effects, further diminishing wind energy resources. This comprehensive analysis is pivotal for the development of sustainable energy solutions. A new wind power generation model has been developed from this research, designed for use in environmental impact assessments and the strategic siting of new wind farms. The model effectively quantifies potential energy losses in turbine environments, considering both anthropogenic climate change and urban expansion. This advancement provides a critical tool for policymakers and urban planners aiming to optimize wind energy utilization and mitigate the environmental impacts of urbanization and climate change.

JPs e3s & ESI – Joint workshop on Sustainability in Energy Systems


 

JPs e3s & ESI – Joint workshop on Sustainability in Energy Systems
4th june 2024, Lithuanian Energy institute, Breslaujos st. 3, LT-44403 Kaunas, Lithuania.

 

Background

A central aim of the energy transition is not only to achieve climate-neutrality, but also that the future energy system is sustainable. Today, energy systems models (ESMs) are the dominant tool used for the model-based construction of energy scenarios aimed at providing policy advice to achieve climate-neutrality typically by the middle of the century. However, in most cases the models used minimise total system costs under different decarbonisation constraints and, more generally, focus on techno-economic aspects, i.e. they fall short in considering sustainability aspects in a wider sense. A comprehensive sustainability assessment of the resulting scenarios and energy systems is typically missing and, in the few cases where it is carried out, the scenarios typically perform poorly with respect to sustainability criteria beyond global warming potential since these criteria are not taken into account in the scenario construction. As a result, the produced scenarios and systems lack practical feasibility.

Objectives

This one-day workshop is aimed at discussing the methodological challenges and possible solutions to provide the required pre-conditions to develop sustainable energy systems and transition scenarios from a holistic perspective. Therefore, the focus will be on multidisciplinary approaches, which are suitable for considering environmental, economic and social aspects as well as their cross-impacts and for dealing with the target conflicts that arise inevitably. The aim is to summarise the possible solutions and research requirements discussed in a white paper.

Format

This is a roll-up-your-sleeves workshop. Participants are encouraged to present a poster at lunchtime, which should focus on possible contributions to the topic of the workshop (solutions for constructing transition scenarios towards sustainable energy systems more holistically). Potential posters should ideally address at least two of the following topics:

Posters presentation

Participants interested to present a poster should send a poster title to m.menon@eera-set.eu and g.botton@eera-set.eu by April 30th 2024 at the latest.

Registration and additional information

https://www.eventbrite.com/e/jps-e3s-esi-joint-workshop-on-sustainability-in-energy-systems-tickets-858148062957

Programme: EERA JP e3s JP ESI joint Workshop 4th June Kaunas Programme

EERA JPs ESI & e3s workshops in Kaunas

About this event
EERA Joint Programmes on Energy System Integration (JP ESI) and on clean Energy tranSition for Sustainable Society (JP e3s) are excited to meet you at the Lithuanian Energy Institute in Kaunas, Lithuania, for 2 days of intense activities and debates on energy transition & sustainability.

More about the event: https://www.eera-set.eu/events/events-of-eera-and-its-partners/4219:eera-jps-esi-e3s-workshops-in-kaunas-lithuania-1.html

June 4th Programme: EERA JP e3s JP ESI joint Workshop 4th June Kaunas Programme
June 5th Programme: EERA Central-Eastern Europe workshop 5th June Kaunas Programme
June 6th Programme: EERA Steering Commitee meeting 6th June Kaunas Programme


Gediminas Skarbalius “Molecular dynamics study of energetic characteristics of evaporating, condensing and reflecting molecules at the liquid-vapour interface” doctoral dissertation defense

Author, Institution: Gediminas Skarbalius, Lithuanian Energy Institute

Dissertation title: Molecular dynamics study of energetic characteristics of evaporating, condensing and reflecting molecules at the liquid-vapour interface

Science area, field of science: Technological Sciences, Energetics and Power Engineering, T006.

Defense of the dissertation: 2024-04-18, 10:00 a.m., Lithuanian Energy Institute, AK-202 auditorium, Breslaujos st. 3, Kaunas, Lithuania.

Scientific Supervisor: Dr. Algis Džiugys (Lithuanian Energy Institute, Technological Sciences, Energetics and Power Engineering T 006).

Dissertation Defense Board of Energetics and Power Engineering Science Field:

The doctoral dissertation is available on the www.ktu.edu and at the library of Kaunas University of Technology (K. Donelaičio g. 20, Kaunas) and at Lithuanian Energy Institute (Breslaujos g. 3, Kaunas).

Annotation
Understanding evaporation/condensation processes at the nanoscale is crucial for the development of micro- and nanoflow technologies. However, experimental assessment of these processes remains challenging due to the difficulty in measuring the specific process conditions in the Knudsen layer adjacent to the evaporating/condensing liquid surface. In this thesis, the evaporation/condensation processes in the Knudsen layer were studied using the molecular dynamics simulation method, which allows to evaluate these processes at the molecular level and to calculate the process coefficients directly from the molecular fluxes crossing the liquid-vapor interface. From the molecular dynamics simulations, the dependence of the water condensation coefficient on the energy of the condensing vapour molecules was evaluated and the energy characteristics of the water molecules crossing the interface layer were determined. Also, in order to specify the molecular dynamics modelling methodology of evaporation/condensation processes, a study of the impact of the temperature control strategy in steady-state virtual vacuum simulation on the spontaneous evaporation rate and corresponding evaporation coefficient was performed.

Serhii Nazarenko “Patterns of low flow and hydrological drought risk assessment in Lithuanian rivers under climate change” doctoral dissertation defense

Author, Institution: Serhii Nazarenko, Lithuanian Energy Institute

Dissertation title: Patterns of low flow and hydrological drought risk assessment in Lithuanian rivers under climate change

Science area, field of science: Technological Sciences, Environmental Engineering, T004

Defense of the dissertation: 2024-02-21, 10:00 a.m., Lithuanian Energy Institute, AK-202 auditorium, Breslaujos st. 3, Kaunas, Lithuania.

Scientific Supervisor: Dr. Jūratė Kriaučiūnienė (Lithuanian Energy Institute, Technological Sciences, Environmental Engineering, T004)

Dissertation Defense Board of Environmental Engineering Science Field:

The doctoral dissertation is available on the internet and at the library of Kaunas University of Technology (Gedimino st. 50, Kaunas).

Annotation
With climate change, the question of human impact on rivers and their usage becomes acute, making the determination of minimum river flow essential for addressing technical or environmental challenges. However, depending on the purpose, this can be done through the identification of hydrological drought, low flow, or even river intermittency. This study investigates changes in rivers’ low flow, including river intermittency and hydrological drought in Lithuania, and assesses their interoperability. Despite extensive research at regional and global levels, there is often a lack of understanding at the local level, especially regarding hydrological drought forecasting and the hydrological drought risk assessment. Within the scope of the work, a historical analysis of changes in low flow in Lithuanian rivers was conducted, with a separate analysis on river intermittency. The investigation of hydrological drought was carried out for the 1961-2020 period using the Streamflow Drought Index (SDI) and the Standardized Water Level Index (SWLI). Additionally, hydrological drought forecasting was performed for 6 Lithuanian rivers using the HBV software. Finally, GIS software was utilized to analyze Lithuania’s catchments and identify territories with the highest risk of hydrological drought. Given the limited studies on hydrological drought in Lithuania, this research aims to fill critical gaps, offering insights into intermittent rivers, changes in low flow due to climate change, and a comprehensive hydrological drought risk assessment. The results provide valuable information for policymakers, water resource managers, and stakeholders, aiding sustainable river management and guiding adaptation strategies.

20th International Conference of Young Scientists on Energy and Natural Sciences Issues (CYSENI 2023)

Registration to the conference is now open. We encourage prospective attendees and guests to subscribe to the event CYSENI 2024 for the latest updates.

REGISTRATION: https://cyseni.com/registration/
FACEBOOK EVENT: https://www.facebook.com/events/167106509729132

DESCRIPTION
Lithuanian Energy Institute (LEI) and Lithuanian Research Centre for Agriculture and Forestry (LAMMC) invite you to participate in the 20th International Conference of Young Scientists on Energy and Natural Sciences Issues (CYSENI 2023). The conference will be held in Kaunas, Lithuania, from May 21 to 23, 2024. We are delighted that this year’s CYSENI conference marks a significant milestone as we celebrate its 20th edition!

If you-re seeking new knowledge and want to share your research, this is the event to attend. Participation in the conference is free of charge!

CYSENI main goal is to discuss issues and perspectives of Natural Sciences and Energy Sector worldwide. Also, this conference allows young scientists, such as undergraduates, MSc, PhD students, postdocs, entrant engineers to develop their skills, make new contacts and forge durable scientific relationships.

CONFERENCE TOPICS AND IMPORTANT DATES: www.cyseni.com/topics-and-deadlines/
INSTRUCTIONS FOR AUTHORS: https://cyseni.com/instructions-for-authors/

IMPORTANT DATES AND DEADLINES
📍 06 December 2023 – 02 February 2024 – registration and abstracts submission
📍 08 March 2024 – author notification on abstract acceptance
📍 08 May 2024 – announcement of the Conference program
📍 21–23 May 2024 – Conference event

Inna Pitak “Solid recovered fuel: extraction from municipal solid waste and use in industry” doctoral dissertation defense

Author, Institution: Inna Pitak, Lithuanian Energy Institute

Dissertation title: Solid recovered fuel: extraction from municipal solid waste and use in industry

Science area, field of science: Technological Sciences, Environmental Engineering, T004

Defense of the dissertation: 2023-12-15, 10:00 a.m., Lithuanian Energy Institute, AK-202 auditorium, Breslaujos st. 3, Kaunas, Lithuania.

Scientific Supervisor: Prof. Dr. Gintaras Denafas (Lithuanian Energy Institute, Technological Sciences, Environmental Engineering, T004)

Dissertation Defense Board of Environmental Engineering Science Field:

The doctoral dissertation is available on the internet and at the library of Kaunas University of Technology (Gedimino st. 50, Kaunas).

Annotation
The main characteristics of the Refuse Derived Fuel (RDF) and the produced Solid Recovered Fuel (SRF) were investigated in this work. A technological scheme has been developed to produce alternative fuels that can be used in energy-intensive industries, for example, as a replacement fuel during clinker firing. Also, the work proposed an innovative mechanism for extracting raw materials during landfill mining and its application in alternative fuel production. There was an exploration of the extraction of valuable materials from Landfill Mined Residues (LMRs) and their transformation into alternative fuel, thereby contributing to sustainable waste management practices and meeting the energy needs of intensive industries. The work also addresses the issues of waste disposal, which are by-products of combustion products. The environmental feasibility of using Bottom Ash as a substitute component in clay bricks production and the possibility of using ash generated during the gasification of biomass waste as a partial substitute for cement-based materials has been proven. The results of this research will contribute to the most efficient processing of waste and by-product waste, obtaining both environmental and economic benefits. Ultimately, this work can inform the development of strategies and policies to achieve circular economy goals.

LEI General Staff Meeting

9 June 2023 at 13:00 The Director of the Institute, Sigitas Rimkevičius, will present the LEI 2022 Activity Report to the staff at the Institute’s Conference Hall (Room 116-AK) on June 6, 2013. The report will provide an overview of the major events of the LEI in 2022, the achievements of the staff and research units, national and international project activities, cooperation with business, scientific activities and financial indicators.

Lina Vorotinskienė “Analysis of Chipped Wood Moisture Loss in Biofuel Reactors” doctoral dissertation defense

Author, Institution: Lina Vorotinskienė, Lithuanian Energy Institute

Dissertation title: Analysis of Chipped Wood Moisture Loss in Biofuel Reactors

Science area, field of science: Technological Sciences, Energetics and Power Engineering, T006

Defense of the dissertation: 2023-06-01, 10:00 a.m., Lithuanian Energy Institute, AK-202 auditorium, Breslaujos st. 3, Kaunas, Lithuania.

Scientific Supervisor: Dr. Nerijus Striūgas (Lithuanian Energy Institute, Technological Sciences, Energetics and Power Engineering, T006)

Dissertation Defense Board of Energetics and Power Engineering Science Field:

The doctoral dissertation is available on the internet and at the library of Kaunas University of Technology (K. Donelaičio g. 20, Kaunas) and Lithuania Energy Institute (Breslaujos st. 3, Kaunas)

Annotation
Biofuel combustion is one of biomass’s most common heat and electrical energy production methods. However, it is a complicated process, and due to the constantly changing composition of supplied biofuel, various issues are faced, such as incomplete combustion and the formation of harmful byproducts. One of the most commonly variable properties of biofuel is its water content, varying in a wide range and occasionally reaching 60% by mass or more. High moisture content biofuel cannot undergo combustion in the furnace; instead, it takes much space on the fire-grate to dry. In order to improve the devices used for biofuel combustion, it is necessary, first, to determine the influence of drying factors and dependencies on drying agent temperature and stirring frequency. From this follows the study object of this work – moisture loss rate of high moisture content chipped wood biofuel in a biofuel combustion furnace. It is possible to design and integrate sensors to predict drying rate change based on obtained results and improve the efficiency of biofuel combustion equipment.